Jeehub Logo

Feb 1, 2024

JEE Mains

Shift: 2

Total Questions Available: 90

Question 1

In the given reactions identify AA and BB

JEE Main 2024 (Online) 1st February Evening Shift Chemistry - Hydrocarbons Question 10 English

Options:

A)

A : n-Pentane    B : Cis - 2 - butene

B)

A : 2-Pentyne     B : Cis-2-butene

C)

A : n-Pentane     B : trans-2-butene

D)

A : 2-Pentyne      B : trans-2-butene

Question 2

Solubility of calcium phosphate (molecular mass, M) in water is Wg\mathrm{W_{g}} per 100 mL100 \mathrm{~mL} at 25C25^{\circ} \mathrm{C}. Its solubility product at 25C25^{\circ} \mathrm{C} will be approximately.

Options:

A)

107(WM)310^7\left(\frac{W}{M}\right)^3

B)

103(WM)510^3\left(\frac{\mathrm{W}}{\mathrm{M}}\right)^5

C)

107(WM)510^7\left(\frac{W}{M}\right)^5

D)

105(WM)510^5\left(\frac{\mathrm{W}}{\mathrm{M}}\right)^5

Question 3

Given below are two statements :

Statement (I) : SiO2\mathrm{SiO}_2 and GeO2\mathrm{GeO}_2 are acidic while SnO\mathrm{SnO} and PbO\mathrm{PbO} are amphoteric in nature.

Statement (II) : Allotropic forms of carbon are due to property of catenation and pπdπ\mathrm{p} \pi-\mathrm{d} \pi bond formation.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Statement I is false but Statement II is true

B)

Both Statement I and Statement II are false

C)

Both Statement I and Statement II are true

D)

Statement I is true but Statement II is false

Question 4

The set of meta directing functional groups from the following sets is :

Options:

A)

CN,NH2,NHR,OCH3-\mathrm{CN},-\mathrm{NH}_2,-\mathrm{NHR},-\mathrm{OCH}_3

B)

CN,CHO,NHCOCH3,COOR-\mathrm{CN},-\mathrm{CHO},-\mathrm{NHCOCH}_3,-\mathrm{COOR}

C)

NO2,NH2,COOH,COOR-\mathrm{NO}_2,-\mathrm{NH}_2,-\mathrm{COOH},-\mathrm{COOR}

D)

NO2,CHO,SO3H,COR-\mathrm{NO}_2,-\mathrm{CHO},-\mathrm{SO}_3 \mathrm{H},-\mathrm{COR}

Question 5

[Co(NH3)6]3+\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_6\right]^{3+} and [CoF6]3\left[\mathrm{CoF}_6\right]^{3-} are respectively known as :

Options:

A)

Inner orbital Complex, Spin paired Complex

B)

Spin paired Complex, Spin free Complex

C)

Spin free Complex, Spin paired Complex

D)

Outer orbital Complex, Inner orbital Complex

Question 6

The transition metal having highest 3rd 3^{\text {rd }} ionisation enthalpy is :

Options:

A)

Mn\mathrm{Mn}

B)

Fe\mathrm{Fe}

C)

Cr\mathrm{Cr}

D)

VV

Question 7

Match List - I with List - II.

List I (Compound) List II (Use)
(A) Carbon tetrachloride (I) Paint remover
(B) Methylene chloride (II) Refrigerators and air conditioners
(C) DDT (III) Fire extinguisher
(D) Freons (IV) Non Biodegradable insecticide

Choose the correct answer from the options given below :

Options:

A)

(A)-(II), (B)-(III), (C)-(I), (D)-(IV)

B)

(A)-(III), (B)-(I), (C)-(IV), (D)-(II)

C)

(A)-(I), (B)-(II), (C)-(III), (D)-(IV)

D)

(A)-(IV), (B)-(III), (C)-(II), (D)-(I)

Question 8

Match List - I with List - II.

List I (Reactants) List II (Product)
(A) Phenol, Zn/Δ (I) Salicylaldehyde
(B) Phenol, CHCl3, NaOH, HCl (II) Salicylic acid
(C) Phenol, CO2, NaOH, HCl (III) Benzene
(D) Phenol, Conc. HNO3 (IV) Picric acid

Choose the correct answer from the options given below :

Options:

A)

(A)-(IV), (B)-(I), (C)-(II), (D)-(III)

B)

(A)-(III), (B)-(I), (C)-(II), (D)-(IV)

C)

(A)-(IV), (B)-(II), (C)-(I), (D)-(III)

D)

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

Question 9

Given below are two statements :

Statement (I) : Dimethyl glyoxime forms a six-membered covalent chelate when treated with NiCl2\mathrm{NiCl}_2 solution in presence of NH4OH\mathrm{NH}_4 \mathrm{OH}.

Statement (II) : Prussian blue precipitate contains iron both in (+2)(+2) and (+3)(+3) oxidation states.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Statement I is false but Statement II is true

B)

Both Statement I and Statement II are true

C)

Statement I is true but Statement II is false

D)

Both Statement I and Statement II are false

Question 10

JEE Main 2024 (Online) 1st February Evening Shift Chemistry - Hydrocarbons Question 9 English

Acid D formed in above reaction is :

Options:

A)

Malonic acid

B)

Oxalic acid

C)

Succinic acid

D)

Gluconic acid

Question 11

Lassaigne's test is used for detection of :

Options:

A)

Phosphorous and halogens only

B)

Nitrogen, Sulphur and Phosphorous only

C)

Nitrogen, Sulphur, phosphorous and halogens

D)

Nitrogen and Sulphur only

Question 12

The strongest reducing agent among the following is :

Options:

A)

SbH3\mathrm{SbH}_3

B)

NH3\mathrm{NH}_3

C)

BiH3\mathrm{BiH}_3

D)

PH3\mathrm{PH}_3

Question 13

Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : In aqueous solutions Cr2+\mathrm{Cr}^{2+} is reducing while Mn3+\mathrm{Mn}^{3+} is oxidising in nature.

Reason (R) : Extra stability to half filled electronic configuration is observed than incompletely filled electronic configuration.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

(A) is true but (R) is false

B)

Both (A) and (R) are true and (R) is the correct explanation of (A)

C)

Both (A) and (R) are true but (R) is not the correct explanation of (A)

D)

(A) is false but (R) is true

Question 14

The functional group that shows negative resonance effect is :

Options:

A)

OH-\mathrm{OH}

B)

OR-\mathrm{OR}

C)

COOH-\mathrm{COOH}

D)

NH2-\mathrm{NH}_2

Question 15

The number of radial node/s for 3p3 p orbital is :

Options:

A)

3

B)

2

C)

1

D)

4

Question 16

Which among the followng has highest boiling point?

Options:

A)

CH3CH2CH2CH2OH\mathrm{CH}_3 \mathrm{CH}_2 \mathrm{CH}_2 \mathrm{CH}_2-\mathrm{OH}

B)

CH3CH2CH2CH3\mathrm{CH}_3 \mathrm{CH}_2 \mathrm{CH}_2 \mathrm{CH}_3

C)

CH3CH2CH2CHO\mathrm{CH}_3 \mathrm{CH}_2 \mathrm{CH}_2 \mathrm{CHO}

D)

H5C2OC2H5\mathrm{H}_5 \mathrm{C}_2-\mathrm{O}-\mathrm{C}_2 \mathrm{H}_5

Question 17

Given below are two statements :

Statement (I) : A π\pi bonding MO has lower electron density above and below the inter-nuclear axis.

Statement (II) : The π\pi^* antibonding MO has a node between the nuclei.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Both Statement I and Statement II are true

B)

Both Statement I and Statement II are false

C)

Statement I is true but Statement II is false

D)

Statement I is false but Statement II is true

Question 18

Given below are two statements :

Statement (I) : Both metals and non-metals exist in p and d-block elements.

Statement (II) : Non-metals have higher ionisation enthalpy and higher electronegativity than the metals.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Both Statement I and Statement II are false

B)

Both Statement I and Statement II are true

C)

Statement I is false but Statement II is true

D)

Statement I is true but Statement II is false

Question 19

Which of the following compounds show colour due to d-d transition?

Options:

A)

K2Cr2O7\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7

B)

CuSO45H2O\mathrm{CuSO}_4 \cdot 5 \mathrm{H}_2 \mathrm{O}

C)

KMnO4\mathrm{KMnO}_4

D)

K2CrO4\mathrm{K}_2 \mathrm{CrO}_4

Question 20

Select the compound from the following that will show intramolecular hydrogen bonding.

Options:

A)

JEE Main 2024 (Online) 1st February Evening Shift Chemistry - Chemical Bonding & Molecular Structure Question 23 English Option 1

B)

H2O\mathrm{H}_2 \mathrm{O}

C)

C2H5OH\mathrm{C}_2 \mathrm{H}_5 \mathrm{OH}

D)

NH3\mathrm{NH}_3

Numerical TypeQuestion 21

The number of tripeptides formed by three different amino acids using each amino acid once is ______.

Numerical TypeQuestion 22

Mass of ethylene glycol (antifreeze) to be added to 18.6 kg18.6 \mathrm{~kg} of water to protect the freezing point at 24C-24^{\circ} \mathrm{C} is ________ kg\mathrm{kg} (Molar mass in g mol1\mathrm{g} ~\mathrm{mol}^{-1} for ethylene glycol 62, Kf62, \mathrm{~K}_f of water =1.86 K=1.86 \mathrm{~K} kg mol1\mathrm{kg} ~\mathrm{mol}^{-1} )

Numerical TypeQuestion 23

Total number of isomeric compounds (including stereoisomers) formed by monochlorination of 2-methylbutane is _______ .

Numerical TypeQuestion 24

The following data were obtained during the first order thermal decomposition of a gas A at constant volume :

A(g)2 B( g)+C(g)\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})

S.No. Time /s Total pressure /(atm)
1. 0 0.1
2. 115 0.28

The rate constant of the reaction is ________ ×102 s1\times 10^{-2} \mathrm{~s}^{-1} (nearest integer)

Numerical TypeQuestion 25

For a certain reaction at 300 K, K=10300 \mathrm{~K}, \mathrm{~K}=10, then ΔG\Delta \mathrm{G}^{\circ} for the same reaction is - ____________ ×101 kJ mol1\times 10^{-1} \mathrm{~kJ} \mathrm{~mol}^{-1}.

(Given R=8.314JK1 mol1\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} )

Numerical TypeQuestion 26

The amount of electricity in Coulomb required for the oxidation of 1 mol1 \mathrm{~mol} of H2O\mathrm{H}_2 \mathrm{O} to O2\mathrm{O}_2 is __________ ×105C\times 10^5 \mathrm{C}.

Numerical TypeQuestion 27

Following Kjeldahl's method, 1 g1 \mathrm{~g} of organic compound released ammonia, that neutralised 10 mL10 \mathrm{~mL} of 2M H2SO42 \mathrm{M} ~\mathrm{H}_2 \mathrm{SO}_4. The percentage of nitrogen in the compound is ___________ %\%.

Numerical TypeQuestion 28

Consider the following redox reaction :

MnO4+H++H2C2O4Mn2++H2O+CO2 \mathrm{MnO}_4^{-}+\mathrm{H}^{+}+\mathrm{H}_2 \mathrm{C}_2 \mathrm{O}_4 \rightleftharpoons \mathrm{Mn}^{2+}+\mathrm{H}_2 \mathrm{O}+\mathrm{CO}_2

The standard reduction potentials are given as below (Ered 0)\left(\mathrm{E}_{\text {red }}^0\right) :

EMnO4/Mn2+=+1.51 VECO2/H2C2O4=0.49 V \begin{aligned} & \mathrm{E}_{\mathrm{MnO}_4^{-} / \mathrm{Mn}^{2+}}^{\circ}=+1.51 \mathrm{~V} \\\\ & \mathrm{E}_{\mathrm{CO}_2 / \mathrm{H}_2 \mathrm{C}_2 \mathrm{O}_4}^{\circ}=-0.49 \mathrm{~V} \end{aligned}

If the equilibrium constant of the above reaction is given as Keq=10x\mathrm{K}_{\mathrm{eq}}=10^x, then the value of x=x= __________ (nearest integer)

Numerical TypeQuestion 29

Number of compounds which give reaction with Hinsberg's reagent is _________.

JEE Main 2024 (Online) 1st February Evening Shift Chemistry - Compounds Containing Nitrogen Question 12 English

Numerical TypeQuestion 30

10 mL10 \mathrm{~mL} of gaseous hydrocarbon on combustion gives 40 mL40 \mathrm{~mL} of CO2( g)\mathrm{CO}_2(\mathrm{~g}) and 50 mL50 \mathrm{~mL} of water vapour. Total number of carbon and hydrogen atoms in the hydrocarbon is _________ .

Question 31

If the domain of the function

f(x)=x225(4x2)+log10(x2+2x15)f(x)=\frac{\sqrt{x^2-25}}{\left(4-x^2\right)}+\log _{10}\left(x^2+2 x-15\right) is (,α)[β,)(-\infty, \alpha) \cup[\beta, \infty), then α2+β3\alpha^2+\beta^3 is equal to :

Options:

A)

140

B)

175

C)

125

D)

150

Question 32

If zz is a complex number such that z1|z| \leqslant 1, then the minimum value of z+12(3+4i)\left|z+\frac{1}{2}(3+4 i)\right| is :

Options:

A)

2

B)

52\frac{5}{2}

C)

32\frac{3}{2}

D)

3

Question 33

Consider a ABC\triangle A B C where A(1,3,2),B(2,8,0)A(1,3,2), B(-2,8,0) and C(3,6,7)C(3,6,7). If the angle bisector of BAC\angle B A C meets the line BCB C at DD, then the length of the projection of the vector AD\overrightarrow{A D} on the vector AC\overrightarrow{A C} is :

Options:

A)

37238\frac{37}{2 \sqrt{38}}

B)

19\sqrt{19}

C)

39238\frac{39}{2 \sqrt{38}}

D)

382\frac{\sqrt{38}}{2}

Question 34

Consider the relations R1R_1 and R2R_2 defined as aR1ba2+b2=1a R_1 b \Leftrightarrow a^2+b^2=1 for all a,bRa, b \in \mathbf{R} and (a,b)R2(c,d)(a, b) R_2(c, d) \Leftrightarrow a+d=b+ca+d=b+c for all (a,b),(c,d)N×N(a, b),(c, d) \in \mathbf{N} \times \mathbf{N}. Then :

Options:

A)

R1R_1 and R2R_2 both are equivalence relations

B)

Only R1R_1 is an equivalence relation

C)

Only R2R_2 is an equivalence relation

D)

Neither R1R_1 nor R2R_2 is an equivalence relation

Question 35

Let the system of equations x+2y+3z=5,2x+3y+z=9,4x+3y+λz=μx+2 y+3 z=5,2 x+3 y+z=9,4 x+3 y+\lambda z=\mu have infinite number of solutions. Then λ+2μ\lambda+2 \mu is equal to :

Options:

A)

22

B)

17

C)

15

D)

28

Question 36

If 0π3cos4x dx=aπ+b3\int\limits_0^{\frac{\pi}{3}} \cos ^4 x \mathrm{~d} x=\mathrm{a} \pi+\mathrm{b} \sqrt{3}, where a\mathrm{a} and b\mathrm{b} are rational numbers, then 9a+8b9 \mathrm{a}+8 \mathrm{b} is equal to :

Options:

A)

2

B)

1

C)

3

D)

32\frac{3}{2}

Question 37

Let α\alpha and β\beta be the roots of the equation px2+qxr=0p x^2+q x-r=0, where p0p \neq 0. If p,qp, q and rr be the consecutive terms of a non constant G.P. and 1α+1β=34\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}, then the value of (αβ)2(\alpha-\beta)^2 is :

Options:

A)

8

B)

9

C)

203\frac{20}{3}

D)

809\frac{80}{9}

Question 38

Let Ajay will not appear in JEE exam with probability p=27\mathrm{p}=\frac{2}{7}, while both Ajay and Vijay will appear in the exam with probability q=15\mathrm{q}=\frac{1}{5}. Then the probability, that Ajay will appear in the exam and Vijay will not appear is :

Options:

A)

935\frac{9}{35}

B)

335\frac{3}{35}

C)

2435\frac{24}{35}

D)

1835\frac{18}{35}

Question 39

Let P\mathrm{P} be a point on the ellipse x29+y24=1\frac{x^2}{9}+\frac{y^2}{4}=1. Let the line passing through P\mathrm{P} and parallel to yy-axis meet the circle x2+y2=9x^2+y^2=9 at point Q\mathrm{Q} such that P\mathrm{P} and Q\mathrm{Q} are on the same side of the xx-axis. Then, the eccentricity of the locus of the point RR on PQP Q such that PR:RQ=4:3P R: R Q=4: 3 as PP moves on the ellipse, is :

Options:

A)

1321\frac{13}{21}

B)

13923\frac{\sqrt{139}}{23}

C)

137\frac{\sqrt{13}}{7}

D)

1119\frac{11}{19}

Question 40

Consider 10 observations x1,x2,,x10x_1, x_2, \ldots, x_{10} such that i=110(xiα)=2\sum\limits_{i=1}^{10}\left(x_i-\alpha\right)=2 and i=110(xiβ)2=40\sum\limits_{i=1}^{10}\left(x_i-\beta\right)^2=40, where α,β\alpha, \beta are positive integers. Let the mean and the variance of the observations be 65\frac{6}{5} and 8425\frac{84}{25} respectively. Then βα\frac{\beta}{\alpha} is equal to :

Options:

A)

2

B)

1

C)

52\frac{5}{2}

D)

32\frac{3}{2}

Question 41

Let f(x)=2x2+5x3,xRf(x)=\left|2 x^2+5\right| x|-3|, x \in \mathbf{R}. If m\mathrm{m} and n\mathrm{n} denote the number of points where ff is not continuous and not differentiable respectively, then m+n\mathrm{m}+\mathrm{n} is equal to :

Options:

A)

5

B)

3

C)

2

D)

0

Question 42

The number of solutions of the equation 4sin2x4cos3x+94cosx=0;x[2π,2π]4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi] is :

Options:

A)

0

B)

3

C)

1

D)

2

Question 43

Let the locus of the midpoints of the chords of the circle x2+(y1)2=1x^2+(y-1)^2=1 drawn from the origin intersect the line x+y=1x+y=1 at P\mathrm{P} and Q\mathrm{Q}. Then, the length of PQ\mathrm{PQ} is :

Options:

A)

12\frac{1}{2}

B)

1

C)

12\frac{1}{\sqrt{2}}

D)

2\sqrt{2}

Question 44

Let α\alpha be a non-zero real number. Suppose f:RRf: \mathbf{R} \rightarrow \mathbf{R} is a differentiable function such that f(0)=2f(0)=2 and limxf(x)=1\lim\limits_{x \rightarrow-\infty} f(x)=1. If f(x)=αf(x)+3f^{\prime}(x)=\alpha f(x)+3, for all xRx \in \mathbf{R}, then f(loge2)f\left(-\log _{\mathrm{e}} 2\right) is equal to :

Options:

A)

7

B)

9

C)

3

D)

5

Question 45

Let P\mathrm{P} and Q\mathrm{Q} be the points on the line x+38=y42=z+12\frac{x+3}{8}=\frac{y-4}{2}=\frac{z+1}{2} which are at a distance of 6 units from the point R(1,2,3)\mathrm{R}(1,2,3). If the centroid of the triangle PQR is (α,β,γ)(\alpha, \beta, \gamma), then α2+β2+γ2\alpha^2+\beta^2+\gamma^2 is :

Options:

A)

18

B)

24

C)

26

D)

36

Question 46

The value of 01(2x33x2x+1)13 dx\int\limits_0^1\left(2 x^3-3 x^2-x+1\right)^{\frac{1}{3}} \mathrm{~d} x is equal to :

Options:

A)

-1

B)

2

C)

0

D)

1

Question 47

If the mirror image of the point P(3,4,9)P(3,4,9) in the line

x13=y+12=z21\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1} is (α,β,γ)(\alpha, \beta, \gamma), then 14 (α+β+γ)(\alpha+\beta+\gamma) is :

Options:

A)

102

B)

138

C)

132

D)

108

Question 48

Let SnS_n denote the sum of the first nn terms of an arithmetic progression. If S10=390S_{10}=390 and the ratio of the tenth and the fifth terms is 15:715: 7, then S15S5\mathrm{S}_{15}-\mathrm{S}_5 is equal to :

Options:

A)

800

B)

890

C)

790

D)

690

Question 49

Let mm and nn be the coefficients of seventh and thirteenth terms respectively

in the expansion of (13x13+12x23)18\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}. Then (nm)13\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}} is :

Options:

A)

19\frac{1}{9}

B)

14\frac{1}{4}

C)

49\frac{4}{9}

D)

94\frac{9}{4}

Question 50

Let f(x)={x1,x is even, 2x,x is odd, xNf(x)=\left\{\begin{array}{l}x-1, x \text { is even, } \\ 2 x, \quad x \text { is odd, }\end{array} x \in \mathbf{N}\right..

If for some aN,f(f(f(a)))=21\mathrm{a} \in \mathbf{N}, f(f(f(\mathrm{a})))=21, then limxa{x3a[xa]}\lim\limits_{x \rightarrow \mathrm{a}^{-}}\left\{\frac{|x|^3}{\mathrm{a}}-\left[\frac{x}{\mathrm{a}}\right]\right\}, where [t][t] denotes the greatest integer less than or equal to tt, is equal to :

Options:

A)

169

B)

121

C)

225

D)

144

Numerical TypeQuestion 51

Three points O(0,0),P(a,a2),Q(b,b2),a>0, b>0\mathrm{O}(0,0), \mathrm{P}\left(\mathrm{a}, \mathrm{a}^2\right), \mathrm{Q}\left(-\mathrm{b}, \mathrm{b}^2\right), \mathrm{a}>0, \mathrm{~b}>0, are on the parabola y=x2y=x^2. Let S1\mathrm{S}_1 be the area of the region bounded by the line PQ\mathrm{PQ} and the parabola, and S2\mathrm{S}_2 be the area of the triangle OPQ\mathrm{OPQ}. If the minimum value of S1 S2\frac{\mathrm{S}_1}{\mathrm{~S}_2} is mn,gcd(m,n)=1\frac{\mathrm{m}}{\mathrm{n}}, \operatorname{gcd}(\mathrm{m}, \mathrm{n})=1, then m+n\mathrm{m}+\mathrm{n} is equal to __________.

Numerical TypeQuestion 52

The sum of squares of all possible values of kk, for which area of the region bounded by the parabolas 2y2=kx2 y^2=\mathrm{k} x and ky2=2(yx)\mathrm{ky}^2=2(y-x) is maximum, is equal to :

Numerical TypeQuestion 53

If y=(x+1)(x2x)xx+x+x+115(3cos2x5)cos3xy=\frac{(\sqrt{x}+1)\left(x^2-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^2 x-5\right) \cos ^3 x, then 96y(π6)96 y^{\prime}\left(\frac{\pi}{6}\right) is equal to :

Numerical TypeQuestion 54

If dx dy=1+xy2y,x(1)=1\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1+x-y^2}{y}, x(1)=1, then 5x(2)5 x(2) is equal to __________.

Numerical TypeQuestion 55

Let f:(0,)Rf:(0, \infty) \rightarrow \mathbf{R} and F(x)=0xtf(t)dt\mathrm{F}(x)=\int\limits_0^x \mathrm{t} f(\mathrm{t}) \mathrm{dt}. If F(x2)=x4+x5\mathrm{F}\left(x^2\right)=x^4+x^5, then r=112f(r2)\sum\limits_{\mathrm{r}=1}^{12} f\left(\mathrm{r}^2\right) is equal to ____________.

Numerical TypeQuestion 56

Let ABCA B C be an isosceles triangle in which AA is at (1,0),A=2π3,AB=AC(-1,0), \angle A=\frac{2 \pi}{3}, A B=A C and BB is on the positve xx-axis. If BC=43\mathrm{BC}=4 \sqrt{3} and the line BC\mathrm{BC} intersects the line y=x+3y=x+3 at (α,β)(\alpha, \beta), then β4α2\frac{\beta^4}{\alpha^2} is __________.

Numerical TypeQuestion 57

Let A=I22MMTA=I_2-2 M M^T, where MM is a real matrix of order 2×12 \times 1 such that the relation MTM=I1M^T M=I_1 holds. If λ\lambda is a real number such that the relation AX=λXA X=\lambda X holds for some non-zero real matrix XX of order 2×12 \times 1, then the sum of squares of all possible values of λ\lambda is equal to __________.

Numerical TypeQuestion 58

Let a=i^+j^+k^,b=i^8j^+2k^\overrightarrow{\mathrm{a}}=\hat{i}+\hat{j}+\hat{k}, \overrightarrow{\mathrm{b}}=-\hat{i}-8 \hat{j}+2 \hat{k} and c=4i^+c2j^+c3k^\overrightarrow{\mathrm{c}}=4 \hat{i}+\mathrm{c}_2 \hat{j}+\mathrm{c}_3 \hat{k} be three vectors such that b×a=c×a\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}. If the angle between the vector c\overrightarrow{\mathrm{c}} and the vector 3i^+4j^+k^3 \hat{i}+4 \hat{j}+\hat{k} is θ\theta, then the greatest integer less than or equal to tan2θ\tan ^2 \theta is _______________.

Numerical TypeQuestion 59

If three successive terms of a G.P. with common ratio r(r>1)\mathrm{r}(\mathrm{r}>1) are the lengths of the sides of a triangle and [r][r] denotes the greatest integer less than or equal to rr, then 3[r]+[r]3[r]+[-r] is equal to _____________.

Numerical TypeQuestion 60

The lines L1, L2,,L20\mathrm{L}_1, \mathrm{~L}_2, \ldots, \mathrm{L}_{20} are distinct. For n=1,2,3,,10\mathrm{n}=1,2,3, \ldots, 10 all the lines L2n1\mathrm{L}_{2 \mathrm{n}-1} are parallel to each other and all the lines L2nL_{2 n} pass through a given point PP. The maximum number of points of intersection of pairs of lines from the set {L1, L2,,L20}\left\{\mathrm{L}_1, \mathrm{~L}_2, \ldots, \mathrm{L}_{20}\right\} is equal to ___________.

Question 61

From the statements given below :

(A) The angular momentum of an electron in nth n^{\text {th }} orbit is an integral multiple of \hbar.

(B) Nuclear forces do not obey inverse square law.

(C) Nuclear forces are spin dependent.

(D) Nuclear forces are central and charge independent.

(E) Stability of nucleus is inversely proportional to the value of packing fraction.

Choose the correct answer from the options given below :

Options:

A)

(B), (C), (D), (E) only

B)

(A), (C), (D), (E) only

C)

(A), (B), (C), (E) only

D)

(A), (B), (C), (D) only

Question 62

A body of mass 4 kg4 \mathrm{~kg} experiences two forces F1=5i^+8j^+7k^\vec{F}_1=5 \hat{i}+8 \hat{j}+7 \hat{k} and F2=3i^4j^3k^\overrightarrow{\mathrm{F}}_2=3 \hat{i}-4 \hat{j}-3 \hat{k}. The acceleration acting on the body is :

Options:

A)

2i^+j^+k^2 \hat{i}+\hat{j}+\hat{k}

B)

4i^+2j^+2k^4 \hat{i}+2 \hat{j}+2 \hat{k}

C)

2i^j^k^-2 \hat{i}-\hat{j}-\hat{k}

D)

2i^+3j^+3k^2 \hat{i}+3 \hat{j}+3 \hat{k}

Question 63

Monochromatic light of frequency 6×1014 Hz6 \times 10^{14} \mathrm{~Hz} is produced by a laser. The power emitted is 2×103 W2 \times 10^{-3} \mathrm{~W}.

How many photons per second on an average, are emitted by the source ?

(Given h=6.63×1034Js\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js} )

Options:

A)

5×10155 \times 10^{15}

B)

7×10167 \times 10^{16}

C)

6×10156 \times 10^{15}

D)

9×10189 \times 10^{18}

Question 64

C1C_1 and C2C_2 are two hollow concentric cubes enclosing charges 2Q2 Q and 3Q3 Q respectively as shown in figure. The ratio of electric flux passing through C1C_1 and C2C_2 is :

JEE Main 2024 (Online) 1st February Evening Shift Physics - Electrostatics Question 17 English

Options:

A)

3:23: 2

B)

5:25: 2

C)

2:52: 5

D)

2:32: 3

Question 65

A galvanometer (G)(G) of 2Ω2 \Omega resistance is connected in the given circuit. The ratio of charge stored in C1C_1 and C2C_2 is : JEE Main 2024 (Online) 1st February Evening Shift Physics - Capacitor Question 8 English

Options:

A)

1

B)

23\frac{2}{3}

C)

32\frac{3}{2}

D)

12\frac{1}{2}

Question 66

Match List - I with List - II.

List I (Number) List II (Significant figure)
(A) 1001 (I) 3
(B) 010.1 (II) 4
(C) 100.100 (III) 5
(D) 0.0010010 (IV) 6

Choose the correct answer from the options given below :

Options:

A)

(A)-(II), (B)-(I), (C)-(IV), (D)-(III)

B)

(A)-(IV), (B)-(III), (C)-(I), (D)-(II)

C)

(A)-(I), (B)-(II), (C)-(III), (D)-(IV)

D)

(A)-(III), (B)-(IV), (C)-(II), (D)-(I)

Question 67

A big drop is formed by coalescing 1000 small droplets of water. The surface energy will become :

Options:

A)

1100\frac{1}{100} th

B)

110\frac{1}{10} th

C)

100 times

D)

10 times

Question 68

A cricket player catches a ball of mass 120 g120 \mathrm{~g} moving with 25 m/s25 \mathrm{~m} / \mathrm{s} speed. If the catching process is completed in 0.1 s0.1 \mathrm{~s} then the magnitude of force exerted by the ball on the hand of player will be (in SI unit) :

Options:

A)

30

B)

24

C)

12

D)

25

Question 69

In a metre-bridge when a resistance in the left gap is 2Ω2 \Omega and unknown resistance in the right gap, the balance length is found to be 40 cm40 \mathrm{~cm}. On shunting the unknown resistance with 2Ω2 \Omega, the balance length changes by :

Options:

A)

62.562.5

B)

22.5 cm22.5 \mathrm{~cm}

C)

20 cm20 \mathrm{~cm}

D)

65 cm65 \mathrm{~cm}

Question 70

A diatomic gas (γ=1.4)(\gamma=1.4) does 200 J200 \mathrm{~J} of work when it is expanded isobarically. The heat given to the gas in the process is :

Options:

A)

800 J800 \mathrm{~J}

B)

600 J600 \mathrm{~J}

C)

700 J700 \mathrm{~J}

D)

850 J850 \mathrm{~J}

Question 71

Train A is moving along two parallel rail tracks towards north with speed 72 km/h72 \mathrm{~km} / \mathrm{h} and train B is moving towards south with speed 108 km/h108 \mathrm{~km} / \mathrm{h}. Velocity of train B with respect to A and velocity of ground with respect to B are (in ms1\mathrm{ms}^{-1}):

Options:

A)

-50 and -30

B)

-50 and 30

C)

-30 and 50

D)

50 and -30

Question 72

A light planet is revolving around a massive star in a circular orbit of radius R\mathrm{R} with a period of revolution T. If the force of attraction between planet and star is proportional to R3/2\mathrm{R}^{-3 / 2} then choose the correct option :

Options:

A)

T2R7/2\mathrm{T}^2 \propto \mathrm{R}^{7 / 2}

B)

T2R3\mathrm{T}^2 \propto \mathrm{R}^3

C)

T2R5/2\mathrm{T}^2 \propto \mathrm{R}^{5 / 2}

D)

T2R3/2\mathrm{T}^2 \propto \mathrm{R}^{3 / 2}

Question 73

A microwave of wavelength 2.0 cm2.0 \mathrm{~cm} falls normally on a slit of width 4.0 cm4.0 \mathrm{~cm}. The angular spread of the central maxima of the diffraction pattern obtained on a screen 1.5 m1.5 \mathrm{~m} away from the slit, will be :

Options:

A)

6060^{\circ}

B)

4545^{\circ}

C)

1515^{\circ}

D)

3030^{\circ}

Question 74

If the root mean square velocity of hydrogen molecule at a given temperature and pressure is 2 km/s2 \mathrm{~km} / \mathrm{s}, the root mean square velocity of oxygen at the same condition in km/s\mathrm{km} / \mathrm{s} is :

Options:

A)

1.0

B)

1.5

C)

2.0

D)

0.5

Question 75

If frequency of electromagnetic wave is 60 MHz60 \mathrm{~MHz} and it travels in air along zz direction then the corresponding electric and magnetic field vectors will be mutually perpendicular to each other and the wavelength of the wave (in m\mathrm{m} ) is :

Options:

A)

2.5

B)

5

C)

10

D)

2

Question 76

To measure the temperature coefficient of resistivity α\alpha of a semiconductor, an electrical arrangement shown in the figure is prepared. The arm BC is made up of the semiconductor. The experiment is being conducted at 25C25^{\circ} \mathrm{C} and resistance of the semiconductor arm is 3 mΩ3 \mathrm{~m} \Omega. Arm BC\mathrm{BC} is cooled at a constant rate of 2C/s2^{\circ} \mathrm{C} / \mathrm{s}. If the galvanometer G\mathrm{G} shows no deflection after 10 s10 \mathrm{~s}, then α\alpha is :

JEE Main 2024 (Online) 1st February Evening Shift Physics - Semiconductor Question 10 English

Options:

A)

1×102C1-1 \times 10^{-2}{ }^{\circ} \mathrm{C}^{-1}

B)

2×102C1-2 \times 10^{-2}{ }^{\circ} \mathrm{C}^{-1}

C)

2.5×102C1-2.5 \times 10^{-2}{ }^{\circ} \mathrm{C}^{-1}

D)

1.5×102C1-1.5 \times 10^{-2}{ }^{\circ} \mathrm{C}^{-1}

Question 77

Conductivity of a photodiode starts changing only if the wavelength of incident light is less than 660 nm660 \mathrm{~nm}. The band gap of photodiode is found to be (X8)eV\left(\frac{\mathrm{X}}{8}\right) \mathrm{eV}. The value of X\mathrm{X} is :

(Given, h=6.6×1034Js,e=1.6×1019C\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} )

Options:

A)

11

B)

13

C)

15

D)

21

Question 78

A transformer has an efficiency of 80%80 \% and works at 10 V10 \mathrm{~V} and 4 kW4 \mathrm{~kW}. If the secondary voltage is 240 V240 \mathrm{~V}, then the current in the secondary coil is :

Options:

A)

1.33 A1.33 \mathrm{~A}

B)

13.33 A13.33 \mathrm{~A}

C)

1.59 A1.59 \mathrm{~A}

D)

15.1 A15.1 \mathrm{~A}

Question 79

In an ammeter, 5%5 \% of the main current passes through the galvanometer. If resistance of the galvanometer is G\mathrm{G}, the resistance of ammeter will be :

Options:

A)

199 G199 \mathrm{~G}

B)

200 G200 \mathrm{~G}

C)

G20\frac{G}{20}

D)

G199\frac{\mathrm{G}}{199}

Question 80

A disc of radius R\mathrm{R} and mass M\mathrm{M} is rolling horizontally without slipping with speed vv. It then moves up an inclined smooth surface as shown in figure. The maximum height that the disc can go up the incline is :

JEE Main 2024 (Online) 1st February Evening Shift Physics - Rotational Motion Question 12 English

Options:

A)

34v2 g\frac{3}{4} \frac{v^2}{\mathrm{~g}}

B)

v2g\frac{v^2}{g}

C)

23v2 g\frac{2}{3} \frac{v^2}{\mathrm{~g}}

D)

12v2 g\frac{1}{2} \frac{v^2}{\mathrm{~g}}

Numerical TypeQuestion 81

A mass mm is suspended from a spring of negligible mass and the system oscillates with a frequency f1f_1. The frequency of oscillations if a mass 9 m9 \mathrm{~m} is suspended from the same spring is f2f_2. The value of f1f2i\frac{f_1}{f_2} \mathrm{i} ________.

Numerical TypeQuestion 82

In an electrical circuit drawn below the amount of charge stored in the capacitor is _______ μ\mu C.

JEE Main 2024 (Online) 1st February Evening Shift Physics - Capacitor Question 7 English

Numerical TypeQuestion 83

A particle initially at rest starts moving from reference point x=0x=0 along xx-axis, with velocity vv that varies as v=4x m/sv=4 \sqrt{x} \mathrm{~m} / \mathrm{s}. The acceleration of the particle is __________ ms2\mathrm{ms}^{-2}.

Numerical TypeQuestion 84

Suppose a uniformly charged wall provides a uniform electric field of 2×104 N/C2 \times 10^4 \mathrm{~N} / \mathrm{C} normally. A charged particle of mass 2 g2 \mathrm{~g} being suspended through a silk thread of length 20 cm20 \mathrm{~cm} and remain stayed at a distance of 10 cm10 \mathrm{~cm} from the wall.

Then the charge on the particle will be 1xμC\frac{1}{\sqrt{x}} \mu \mathrm{C} where x=x= ___________ . [use g=10 m/s2\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2 ]

Numerical TypeQuestion 85

A moving coil galvanometer has 100 turns and each turn has an area of 2.0 cm22.0 \mathrm{~cm}^2. The magnetic field produced by the magnet is 0.01 T0.01 \mathrm{~T} and the deflection in the coil is 0.05 radian when a current of 10 mA10 \mathrm{~mA} is passed through it. The torsional constant of the suspension wire is x×105 Nm/radx \times 10^{-5} \mathrm{~N}-\mathrm{m} / \mathrm{rad}. The value of xx is _______ .

Numerical TypeQuestion 86

One end of a metal wire is fixed to a ceiling and a load of 2 kg2 \mathrm{~kg} hangs from the other end. A similar wire is attached to the bottom of the load and another load of 1 kg1 \mathrm{~kg} hangs from this lower wire. Then the ratio of longitudinal strain of upper wire to that of the lower wire will be ________.

[Area of cross section of wire =0.005 cm2,Y=2×1011Nm2=0.005 \mathrm{~cm}^2, \mathrm{Y}=2 \times 10^{11} \mathrm{Nm}^{-2} and g=10 ms2\mathrm{g}=10 \mathrm{~ms}^{-2} ]

Numerical TypeQuestion 87

In Young's double slit experiment, monochromatic light of wavelength 5000 Å is used. The slits are 1.0 mm1.0 \mathrm{~mm} apart and screen is placed at 1.0 m1.0 \mathrm{~m} away from slits. The distance from the centre of the screen where intensity becomes half of the maximum intensity for the first time is _________ ×106\times 10^{-6} m\mathrm{m}.

Numerical TypeQuestion 88

A coil of 200 turns and area 0.20 m20.20 \mathrm{~m}^2 is rotated at half a revolution per second and is placed in uniform magnetic field of 0.01 T0.01 \mathrm{~T} perpendicular to axis of rotation of the coil. The maximum voltage generated in the coil is 2πβ\frac{2 \pi}{\beta} volt. The value of β\beta is _______.

Numerical TypeQuestion 89

A uniform rod ABA B of mass 2 kg2 \mathrm{~kg} and length 30 cm30 \mathrm{~cm} at rest on a smooth horizontal surface. An impulse of force 0.2 Ns0.2 \mathrm{~Ns} is applied to end B. The time taken by the rod to turn through at right angles will be πx s\frac{\pi}{x} \mathrm{~s}, where x=x= _______ .

Numerical TypeQuestion 90

A particular hydrogen-like ion emits the radiation of frequency 3×1015 Hz3 \times 10^{15} \mathrm{~Hz} when it makes transition from n=2n=2 to n=1n=1. The frequency of radiation emitted in transition from n=3n=3 to n=1n=1 is x9×1015 Hz\frac{x}{9} \times 10^{15} \mathrm{~Hz}, when x=x= ________ .