Jeehub Logo

Jan 31, 2024

JEE Mains

Shift: 1

Total Questions Available: 90

Question 1

Match List I with List II

List - I List - II
(A) Glucose/NaHCO3/Δ\mathrm{NaHCO_3/\Delta} (I) Gluconic acid
(B)  Glucose /HNO3\text { Glucose } / \mathrm{HNO}_3 (II) No reaction
(C)  Glucose /HI/Δ\text { Glucose } / \mathrm{HI} / \Delta (III) n-hexane
(D) Glucose/Bromine water (IV) Saccharic acid

Choose the correct answer from the options given below:

Options:

A)

A-II, B-IV, C-III, D-I

B)

A-III, B-II, C-I, D-IV

C)

A-IV, B-I, C-III, D-II

D)

A-I, B-IV, C-III, D-II

Question 2

Consider the oxides of group 14 elements SiO2,GeO2,SnO2,PbO2,CO\mathrm{SiO}_2, \mathrm{GeO}_2, \mathrm{SnO}_2, \mathrm{PbO}_2, \mathrm{CO} and GeO\mathrm{GeO}. The amphoteric oxides are

Options:

A)

SnO2,CO\mathrm{SnO}_2, \mathrm{CO}

B)

SiO2,GeO2\mathrm{SiO}_2, \mathrm{GeO}_2

C)

SnO2,PbO2\mathrm{SnO}_2, \mathrm{PbO}_2

D)

GeO,GeO2\mathrm{GeO}, \mathrm{GeO}_2

Question 3

The compound that is white in color is

Options:

A)

ammonium sulphide

B)

ammonium arsinomolybdate

C)

lead iodide

D)

lead sulphate

Question 4

Give below are two statements:

Statement - I: Noble gases have very high boiling points.

Statement - II: Noble gases are monoatomic gases. They are held together by strong dispersion forces. Because of this they are liquefied at very low temperature. Hence, they have very high boiling points.

In the light of the above statements, choose the correct answer from the options given below:

Options:

A)

Both Statement I and Statement II are false.

B)

Statement I is true but Statement II is false.

C)

Statement I is false but Statement II is true.

D)

Both Statement I and Statement II are true.

Question 5

A species having carbon with sextet of electrons and can act as electrophile is called

Options:

A)

pentavalent carbon

B)

carbon free radical

C)

carbanion

D)

carbocation

Question 6

Identify the mixture that shows positive deviations from Raoult's Law

Options:

A)

(CH3)2CO+CS2\left(\mathrm{CH}_3\right)_2 \mathrm{CO}+\mathrm{CS}_2

B)

(CH3)2CO+C6H5NH2\left(\mathrm{CH}_3\right)_2 \mathrm{CO}+\mathrm{C}_6 \mathrm{H}_5 \mathrm{NH}_2

C)

CHCl3+C6H6\mathrm{CHCl}_3+\mathrm{C}_6 \mathrm{H}_6

D)

CHCl3+(CH3)2CO\mathrm{CHCl}_3+\left(\mathrm{CH}_3\right)_2 \mathrm{CO}

Question 7

The correct statements from following are:

A. The strength of anionic ligands can be explained by crystal field theory.

B. Valence bond theory does not give a quantitative interpretation of kinetic stability of coordination compounds.

C. The hybridization involved in formation of [Ni(CN)4]2\left[\mathrm{Ni}(\mathrm{CN})_4\right]^{2-} complex is dsp2\mathrm{dsp}^2.

D. The number of possible isomer(s) of cis- [PtCl2(en)2]2+\left[\mathrm{PtCl}_2(\mathrm{en})_2\right]^{2+} is one

Choose the correct answer from the options given below:

Options:

A)

B, C only

B)

B, D only

C)

A, C only

D)

A, D only

Question 8

Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: Alcohols react both as nucleophiles and electrophiles.

Reason R: Alcohols react with active metals such as sodium, potassium and aluminum to yield corresponding alkoxides and liberate hydrogen.

In the light of the above statements, choose the correct answer from the options given below:

Options:

A)

AA is false but RR is true.

B)

Both AA and RR are true but RR is NOT the correct explanation of AA.

C)

Both AA and RR are true and RR is the correct explanation of AA.

D)

AA is true but RR is false.

Question 9

The product (C) in the below mentioned reaction is :

CH3CH2CH2BrΔKOH(alc) AHBrBKOH(aq)ΔC\mathrm{CH}_3-\mathrm{CH}_2-\mathrm{CH}_2-\mathrm{Br} \xrightarrow[\Delta]{\mathrm{KOH}_{(\text {alc) }}} \mathrm{A} \xrightarrow{\mathrm{HBr}} \mathrm{B} \xrightarrow[\mathrm{KOH}_{(\mathrm{aq})}]{\Delta} \mathrm{C}

Options:

A)

Propan-1-ol

B)

Propyne

C)

Propan-2-ol

D)

Propene

Question 10

Identify the factor from the following that does not affect electrolytic conductance of a solution.

Options:

A)

The nature of solvent used.

B)

The nature of the electrolyte added.

C)

The nature of the electrode used.

D)

Concentration of the electrolyte.

Question 11

Integrated rate law equation for a first order gas phase reaction is given by (where Pi\mathrm{P}_{\mathrm{i}} is initial pressure and Pt\mathrm{P}_{\mathrm{t}} is total pressure at time tt)

Options:

A)

k=2.303t×logPi(2PiPt)k=\frac{2.303}{t} \times \log \frac{P_i}{\left(2 P_i-P_t\right)}

B)

k=2.303t×log(2PiPt)Pi\mathrm{k}=\frac{2.303}{\mathrm{t}} \times \log \frac{\left(2 \mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{t}}\right)}{\mathrm{P}_{\mathrm{i}}}

C)

k=2.303t×Pi(2PiPt)k=\frac{2.303}{t} \times \frac{P_i}{\left(2 P_i-P_t\right)}

D)

k=2.303t×log2Pi(2PiPt)\mathrm{k}=\frac{2.303}{\mathrm{t}} \times \log \frac{2 \mathrm{P}_{\mathrm{i}}}{\left(2 \mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{t}}\right)}

Question 12

For the given reaction, choose the correct expression of KC\mathrm{K}_{\mathrm{C}} from the following :-

Fe(aq)3++SCN(aq)(FeSCN)(aq)2+\mathrm{Fe}_{(\mathrm{aq})}^{3+}+\mathrm{SCN}_{(\mathrm{aq})}^{-} \rightleftharpoons(\mathrm{FeSCN})_{(\mathrm{aq})}^{2+}

Options:

A)

KC=[Fe3+][SCN][FeSCN2+]\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}{\left[\mathrm{FeSCN}^{2+}\right]}

B)

KC=[FeSCN2+][Fe3+][SCN]\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{FeSCN}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}

C)

KC=[FeSCN2+]2[Fe3+][SCN]\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{FeSCN}^{2+}\right]^2}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}

D)

KC=[FeSCN2+][Fe3+]2[SCN]2\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{FeSCN}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]^2\left[\mathrm{SCN}^{-}\right]^2}

Question 13

The linear combination of atomic orbitals to form molecular orbitals takes place only when the combining atomic orbitals

A. have the same energy

B. have the minimum overlap

C. have same symmetry about the molecular axis

D. have different symmetry about the molecular axis

Choose the most appropriate from the options given below:

Options:

A)

B, C, D only

B)

A, B, C only

C)

B and D only

D)

A and C only

Question 14

Identify correct statements from below:

A. The chromate ion is square planar.

B. Dichromates are generally prepared from chromates.

C. The green manganate ion is diamagnetic.

D. Dark green coloured K2MnO4\mathrm{K}_2 \mathrm{MnO}_4 disproportionates in a neutral or acidic medium to give permanganate.

E. With increasing oxidation number of transition metal, ionic character of the oxides decreases.

Choose the correct answer from the options given below:

Options:

A)

B, D, E only

B)

A, B, C only

C)

A, D, E only

D)

B, C, D only

Question 15

The metals that are employed in the battery industries are

A. Fe\mathrm{Fe}

B. Mn\mathrm{Mn}

C. Ni\mathrm{Ni}

D. Cr\mathrm{Cr}

E. Cd\mathrm{Cd}

Choose the correct answer from the options given below:

Options:

A)

A, B, C, D and E

B)

A, B, C and D only

C)

B, D and E only

D)

B, C and E only

Question 16

Match List I with List II

List - I (Technique) List - II (Application
(A) Distillation (I) Separation of glycerol from spent-lye
(B) Fractional distillation (II) Aniline - Water mixture
(C) Steam distillation (III) Separation of crude oil fractions
(D) Distillation under reduced pressure (IV) Chloroform - Aniline

Choose the correct answer from the options given below:

Options:

A)

A-I, B-II, C-IV, D-III

B)

A-II, B-III, C-I, D-IV

C)

A-IV, B-I, C-II, D-III

D)

A-IV, B-III, C-II, D-I

Question 17

'Adsorption' principle is used for which of the following purification method?

Options:

A)

Chromatography

B)

Sublimation

C)

Distillation

D)

Extraction

Question 18

Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: pKa\mathrm{pK}_{\mathrm{a}} value of phenol is 10.0 while that of ethanol is 15.9 .

Reason R: Ethanol is stronger acid than phenol.

In the light of the above statements, choose the correct answer from the options given below:

Options:

A)

A is false but R is true.

B)

Both AA and RR are true but RR is NOT the correct explanation of AA.

C)

Both A\mathrm{A} and R\mathrm{R} are true and R\mathrm{R} is the correct explanation of A\mathrm{A}.

D)

AA is true but RR is false.

Question 19

Given below are two statements:

Statement I: IUPAC name of HOCH2(CH2)3CH2COCH3\mathrm{HO}-\mathrm{CH}_2-\left(\mathrm{CH}_2\right)_3-\mathrm{CH}_2-\mathrm{COCH}_3 is 7-hydroxyheptan-2-one.

Statement II: 2-oxoheptan-7-ol is the correct IUPAC name for above compound. In the light of the above statements, choose the most appropriate answer from the options given below:

Options:

A)

Statement I is incorrect but Statement II is correct.

B)

Statement I is correct but Statement II is incorrect.

C)

Both Statement I and Statement II are correct.

D)

Both Statement I and Statement II are incorrect.

Question 20

The correct sequence of electron gain enthalpy of the elements listed below is

A. Ar

B. Br

C. F

D. S

Choose the most appropriate from the options given below:

Options:

A)

A>D>C>B\mathrm{A>D>C>B}

B)

A>D>B>C\mathrm{A}>\mathrm{D}>\mathrm{B}>\mathrm{C}

C)

D>C>B>A\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}

D)

C>B>D>A\mathrm{C}>\mathrm{B}>\mathrm{D}>\mathrm{A}

Numerical TypeQuestion 21

Consider the following reaction at 298 K32O2(g)O3(g)KP=2.47×1029298 \mathrm{~K} \cdot \frac{3}{2} \mathrm{O}_{2(g)} \rightleftharpoons \mathrm{O}_{3(g)} \cdot \mathrm{K}_{\mathrm{P}}=2.47 \times 10^{-29}. ΔrG\Delta_r G^{\ominus} for the reaction is _________ kJ\mathrm{kJ}. (Given R=8.314 JK1 mol1\mathrm{R}=8.314 \mathrm{~JK}^{-1} \mathrm{~mol}^{-1})

Numerical TypeQuestion 22

The product of the following reaction is P.

JEE Main 2024 (Online) 31st January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 8 English

The number of hydroxyl groups present in the product P is ________.

Numerical TypeQuestion 23

The ionization energy of sodium in  kJ mol1\mathrm{~kJ} \mathrm{~mol}^{-1}, if electromagnetic radiation of wavelength 242 nm242 \mathrm{~nm} is just sufficient to ionize sodium atom is _______.

Numerical TypeQuestion 24

Number of alkanes obtained on electrolysis of a mixture of CH3COONa\mathrm{CH}_3 \mathrm{COONa} and C2H5COONa\mathrm{C}_2 \mathrm{H}_5 \mathrm{COONa} is ________.

Numerical TypeQuestion 25

The 'Spin only' Magnetic moment for [Ni(NH3)6]2+\left[\mathrm{Ni}\left(\mathrm{NH}_3\right)_6\right]^{2+} is _________ ×101 BM\times 10^{-1} \mathrm{~BM}. (given == Atomic number of Ni:28\mathrm{Ni}: 28)

Numerical TypeQuestion 26

One Faraday of electricity liberates x×101x \times 10^{-1} gram atom of copper from copper sulphate. xx is ________.

Numerical TypeQuestion 27

Number of moles of methane required to produce 22 g CO2( g)22 \mathrm{~g} \mathrm{~CO}_{2(\mathrm{~g})} after combustion is x×102\mathrm{x} \times 10^{-2} moles. The value of x\mathrm{x} is _________.

Numerical TypeQuestion 28

Molar mass of the salt from NaBr,NaNO3,KI\mathrm{NaBr}, \mathrm{NaNO}_3, \mathrm{KI} and CaF2\mathrm{CaF}_2 which does not evolve coloured vapours on heating with concentrated H2SO4\mathrm{H}_2 \mathrm{SO}_4 is ________ g mol1\mathrm{g} \mathrm{~mol}{ }^{-1}.

(Molar mass in g mol1:Na:23, N:14, K:39,O:16,Br:80,I:127, F:19,Ca:40)\mathrm{g} \mathrm{~mol}^{-1}: \mathrm{Na}: 23, \mathrm{~N}: 14, \mathrm{~K}: 39, \mathrm{O}: 16, \mathrm{Br}: 80, \mathrm{I}: 127, \mathrm{~F}: 19, \mathrm{Ca}: 40)

Numerical TypeQuestion 29

JEE Main 2024 (Online) 31st January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 8 English

The total number of hydrogen atoms in product A and product B is _________.

Numerical TypeQuestion 30

The number of species from the following in which the central atom uses sp3\mathrm{sp}^3 hybrid orbitals in its bonding is __________.

NH3,SO2,SiO2,BeCl2,CO2,H2O,CH4,BF3\mathrm{NH}_3, \mathrm{SO}_2, \mathrm{SiO}_2, \mathrm{BeCl}_2, \mathrm{CO}_2, \mathrm{H}_2 \mathrm{O}, \mathrm{CH}_4, \mathrm{BF}_3

Question 31

\lim _\limits{x \rightarrow 0} \frac{e^{2|\sin x|}-2|\sin x|-1}{x^2}

Options:

A)

is equal to 1

B)

does not exist

C)

is equal to 1-1

D)

is equal to 2

Question 32

For α,β,γ0\alpha, \beta, \gamma \neq 0, if sin1α+sin1β+sin1γ=π\sin ^{-1} \alpha+\sin ^{-1} \beta+\sin ^{-1} \gamma=\pi and (α+β+γ)(αγ+β)=3αβ(\alpha+\beta+\gamma)(\alpha-\gamma+\beta)=3 \alpha \beta, then γ\gamma equals

Options:

A)

3\sqrt{3}

B)

32\frac{\sqrt{3}}{2}

C)

12\frac{1}{\sqrt{2}}

D)

3122\frac{\sqrt{3}-1}{2 \sqrt{2}}

Question 33

Let S\mathrm{S} be the set of positive integral values of aa for which ax2+2(a+1)x+9a+4x28x+32<0,xR\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}. Then, the number of elements in S\mathrm{S} is :

Options:

A)

0

B)

\infty

C)

3

D)

1

Question 34

Let α,β,γ,δZ\alpha, \beta, \gamma, \delta \in \mathbb{Z} and let A(α,β),B(1,0),C(γ,δ)A(\alpha, \beta), B(1,0), C(\gamma, \delta) and D(1,2)D(1,2) be the vertices of a parallelogram ABCD\mathrm{ABCD}. If AB=10A B=\sqrt{10} and the points A\mathrm{A} and C\mathrm{C} lie on the line 3y=2x+13 y=2 x+1, then 2(α+β+γ+δ)2(\alpha+\beta+\gamma+\delta) is equal to

Options:

A)

8

B)

5

C)

12

D)

10

Question 35

For 0<c<b<a0 < c < b < a, let (a+b2c)x2+(b+c2a)x+(c+a2b)=0(a+b-2 c) x^2+(b+c-2 a) x+(c+a-2 b)=0 and α1\alpha \neq 1 be one of its root. Then, among the two statements

(I) If α(1,0)\alpha \in(-1,0), then bb cannot be the geometric mean of aa and cc

(II) If α(0,1)\alpha \in(0,1), then bb may be the geometric mean of aa and cc

Options:

A)

only (II) is true

B)

Both (I) and (II) are true

C)

only (I) is true

D)

Neither (I) nor (II) is true

Question 36

If f(x)=4x+36x4,x23f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3} and (ff)(x)=g(x)(f \circ f)(x)=g(x), where g:R{23}R{23}g: \mathbb{R}-\left\{\frac{2}{3}\right\} \rightarrow \mathbb{R}-\left\{\frac{2}{3}\right\}, then (gogog)(4)(g ogog)(4) is equal to

Options:

A)

4-4

B)

1920\frac{19}{20}

C)

1920-\frac{19}{20}

D)

4

Question 37

Let y=y(x)y=y(x) be the solution of the differential equation dydx=(tanx)+ysinx(secxsinxtanx),x(0,π2)\frac{d y}{d x}=\frac{(\tan x)+y}{\sin x(\sec x-\sin x \tan x)}, x \in\left(0, \frac{\pi}{2}\right) satisfying the condition y(π4)=2y\left(\frac{\pi}{4}\right)=2. Then, y(π3)y\left(\frac{\pi}{3}\right) is

Options:

A)

3(2+loge3)\sqrt{3}\left(2+\log _e 3\right)

B)

3(1+2loge3)\sqrt{3}\left(1+2 \log _e 3\right)

C)

3(2+loge3)\sqrt{3}\left(2+\log _e \sqrt{3}\right)

D)

32(2+loge3)\frac{\sqrt{3}}{2}\left(2+\log _e 3\right)

Question 38

Three rotten apples are accidently mixed with fifteen good apples. Assuming the random variable xx to be the number of rotten apples in a draw of two apples, the variance of xx is

Options:

A)

57153\frac{57}{153}

B)

40153\frac{40}{153}

C)

37153\frac{37}{153}

D)

47153\frac{47}{153}

Question 39

Let a=3i^+j^2k^,b=4i^+j^+7k^\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=4 \hat{i}+\hat{j}+7 \hat{k} and c=i^3j^+4k^\vec{c}=\hat{i}-3 \hat{j}+4 \hat{k} be three vectors. If a vectors p\vec{p} satisfies p×b=c×b\vec{p} \times \vec{b}=\vec{c} \times \vec{b} and pa=0\vec{p} \cdot \vec{a}=0, then p(i^j^k^)\vec{p} \cdot(\hat{i}-\hat{j}-\hat{k}) is equal to

Options:

A)

24

B)

32

C)

36

D)

28

Question 40

The sum of the series 11312+14+21322+24+31332+34+\frac{1}{1-3 \cdot 1^2+1^4}+\frac{2}{1-3 \cdot 2^2+2^4}+\frac{3}{1-3 \cdot 3^2+3^4}+\ldots up to 10 -terms is

Options:

A)

45109\frac{45}{109}

B)

55109-\frac{55}{109}

C)

55109\frac{55}{109}

D)

45109-\frac{45}{109}

Question 41

Two marbles are drawn in succession from a box containing 10 red, 30 white, 2 blue and 15 orange marbles, with replacement being made after each drawing. Then the probability, that first drawn marble is red and second drawn marble is white, is

Options:

A)

425\frac{4}{25}

B)

23\frac{2}{3}

C)

225\frac{2}{25}

D)

475\frac{4}{75}

Question 42

The distance of the point Q(0,2,2)Q(0,2,-2) form the line passing through the point P(5,4,3)P(5,-4, 3) and perpendicular to the lines r=(3i^+2k^)+λ(2i^+3j^+5k^),λR\vec{r}=(-3 \hat{i}+2 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+5 \hat{k}), \lambda \in \mathbb{R} and r=(i^2j^+k^)+μ(i^+3j^+2k^),μR\vec{r}=(\hat{i}-2 \hat{j}+\hat{k})+\mu(-\hat{i}+3 \hat{j}+2 \hat{k}), \mu \in \mathbb{R} is :

Options:

A)

74\sqrt{74}

B)

86\sqrt{86}

C)

54\sqrt{54}

D)

20\sqrt{20}

Question 43

If the system of linear equations

x2y+z=42x+αy+3z=53xy+βz=3\begin{aligned} & x-2 y+z=-4 \\ & 2 x+\alpha y+3 z=5 \\ & 3 x-y+\beta z=3 \end{aligned}

has infinitely many solutions, then 12α+13β12 \alpha+13 \beta is equal to

Options:

A)

60

B)

54

C)

64

D)

58

Question 44

Let g(x)g(x) be a linear function and f(x)={g(x),x0(1+x2+x)1x,x>0f(x)=\left\{\begin{array}{cl}g(x) & , x \leq 0 \\ \left(\frac{1+x}{2+x}\right)^{\frac{1}{x}} & , x>0\end{array}\right., is continuous at x=0x=0. If f(1)=f(1)f^{\prime}(1)=f(-1), then the value g(3)g(3) is

Options:

A)

loge(49)1\log _e\left(\frac{4}{9}\right)-1

B)

13loge(49e1/3)\frac{1}{3} \log _e\left(\frac{4}{9 e^{1 / 3}}\right)

C)

loge(49e1/3)\log _e\left(\frac{4}{9 e^{1 / 3}}\right)

D)

13loge(49)+1\frac{1}{3} \log _e\left(\frac{4}{9}\right)+1

Question 45

The area of the region {(x,y):y24x,x<4,xy(x1)(x2)(x3)(x4)>0,x3}\left\{(x, y): y^2 \leq 4 x, x<4, \frac{x y(x-1)(x-2)}{(x-3)(x-4)}>0, x \neq 3\right\} is

Options:

A)

323\frac{32}{3}

B)

163\frac{16}{3}

C)

83\frac{8}{3}

D)

643\frac{64}{3}

Question 46

The solution curve of the differential equation ydxdy=x(logexlogey+1),x>0,y>0y \frac{d x}{d y}=x\left(\log _e x-\log _e y+1\right), x>0, y>0 passing through the point (e,1)(e, 1) is

Options:

A)

logeyx=y2\left|\log _e \frac{y}{x}\right|=y^2

B)

logeyx=x\left|\log _e \frac{y}{x}\right|=x

C)

logexy=y\left|\log _e \frac{x}{y}\right|=y

D)

2logexy=y+12\left|\log _e \frac{x}{y}\right|=y+1

Question 47

Let aa be the sum of all coefficients in the expansion of (12x+2x2)2023(34x2+2x3)2024\left(1-2 x+2 x^2\right)^{2023}\left(3-4 x^2+2 x^3\right)^{2024} and b=\lim _\limits{x \rightarrow 0}\left(\frac{\int_0^x \frac{\log (1+t)}{t^{2024}+1} d t}{x^2}\right). If the equation cx2+dx+e=0c x^2+d x+e=0 and 2bx2+ax+4=02 b x^2+a x+4=0 have a common root, where c,d,eRc, d, e \in \mathbb{R}, then d:c:\mathrm{d}: \mathrm{c}: e equals

Options:

A)

2:1:42: 1: 4

B)

1:1:41: 1: 4

C)

1:2:41: 2: 4

D)

4:1:44: 1: 4

Question 48

 If f(x)=x32x2+11+3x3x2+22xx3+6x3x4x22 for all xR, then 2f(0)+f(0) is equal to \text { If } f(x)=\left|\begin{array}{ccc} x^3 & 2 x^2+1 & 1+3 x \\ 3 x^2+2 & 2 x & x^3+6 \\ x^3-x & 4 & x^2-2 \end{array}\right| \text { for all } x \in \mathbb{R} \text {, then } 2 f(0)+f^{\prime}(0) \text { is equal to }

Options:

A)

24

B)

18

C)

42

D)

48

Question 49

If one of the diameters of the circle x2+y210x+4y+13=0x^2+y^2-10 x+4 y+13=0 is a chord of another circle C\mathrm{C}, whose center is the point of intersection of the lines 2x+3y=122 x+3 y=12 and 3x2y=53 x-2 y=5, then the radius of the circle C\mathrm{C} is :

Options:

A)

4

B)

32\sqrt2

C)

6

D)

20\sqrt{20}

Question 50

If the foci of a hyperbola are same as that of the ellipse x29+y225=1\frac{x^2}{9}+\frac{y^2}{25}=1 and the eccentricity of the hyperbola is 158\frac{15}{8} times the eccentricity of the ellipse, then the smaller focal distance of the point (2,14325)\left(\sqrt{2}, \frac{14}{3} \sqrt{\frac{2}{5}}\right) on the hyperbola, is equal to

Options:

A)

14254314 \sqrt{\frac{2}{5}}-\frac{4}{3}

B)

725+837 \sqrt{\frac{2}{5}}+\frac{8}{3}

C)

725837 \sqrt{\frac{2}{5}}-\frac{8}{3}

D)

142516314 \sqrt{\frac{2}{5}}-\frac{16}{3}

Numerical TypeQuestion 51

If α\alpha denotes the number of solutions of 1ix=2x|1-i|^x=2^x and β=(zarg(z))\beta=\left(\frac{|z|}{\arg (z)}\right), where z=π4(1+i)[1πiπ+i+πi1+πi],i=1z=\frac{\pi}{4}(1+i)\left[\frac{1-\sqrt{\pi} i}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} i}\right], i=\sqrt{-1}, then the distance of the point (α,β)(\alpha, \beta) from the line 4x3y=74 x-3 y=7 is __________.

Numerical TypeQuestion 52

In the expansion of (1+x)(1x2)(1+3x+3x2+1x3)5,x0(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0, the sum of the coefficients of x3x^3 and x13x^{-13} is equal to __________.

Numerical TypeQuestion 53

Let a\vec{a} and b\vec{b} be two vectors such that a=1,b=4|\vec{a}|=1,|\vec{b}|=4, and ab=2\vec{a} \cdot \vec{b}=2. If c=(2a×b)3b\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b} and the angle between b\vec{b} and c\vec{c} is α\alpha, then 192sin2α192 \sin ^2 \alpha is equal to ________.

Numerical TypeQuestion 54

If the integral 525 \int_\limits0^{\frac{\pi}{2}} \sin 2 x \cos ^{\frac{11}{2}} x\left(1+\operatorname{Cos}^{\frac{5}{2}} x\right)^{\frac{1}{2}} d x is equal to (n264)(n \sqrt{2}-64), then nn is equal to _________.

Numerical TypeQuestion 55

Let S=(1,)S=(-1, \infty) and f:SRf: S \rightarrow \mathbb{R} be defined as

f(x)=\int_\limits{-1}^x\left(e^t-1\right)^{11}(2 t-1)^5(t-2)^7(t-3)^{12}(2 t-10)^{61} d t \text {, }

Let p=\mathrm{p}= Sum of squares of the values of xx, where f(x)f(x) attains local maxima on SS, and q=\mathrm{q}= Sum of the values of x\mathrm{x}, where f(x)f(x) attains local minima on SS. Then, the value of p2+2qp^2+2 q is _________.

Numerical TypeQuestion 56

Let Q\mathrm{Q} and R\mathrm{R} be the feet of perpendiculars from the point P(a,a,a)\mathrm{P}(a, a, a) on the lines x=y,z=1x=y, z=1 and x=y,z=1x=-y, z=-1 respectively. If QPR\angle \mathrm{QPR} is a right angle, then 12a212 a^2 is equal to _________.

Numerical TypeQuestion 57

Let the foci and length of the latus rectum of an ellipse x2a2+y2b2=1,a>bbe(±5,0)\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b b e( \pm 5,0) and 50\sqrt{50}, respectively. Then, the square of the eccentricity of the hyperbola x2b2y2a2b2=1\frac{x^2}{b^2}-\frac{y^2}{a^2 b^2}=1 equals

Numerical TypeQuestion 58

The total number of words (with or without meaning) that can be formed out of the letters of the word 'DISTRIBUTION' taken four at a time, is equal to __________.

Numerical TypeQuestion 59

Let A={1,2,3,4}A=\{1,2,3,4\} and R={(1,2),(2,3),(1,4)}R=\{(1,2),(2,3),(1,4)\} be a relation on A\mathrm{A}. Let S\mathrm{S} be the equivalence relation on A\mathrm{A} such that RSR \subset S and the number of elements in S\mathrm{S} is n\mathrm{n}. Then, the minimum value of nn is __________.

Numerical TypeQuestion 60

Let f:RRf: \mathbb{R} \rightarrow \mathbb{R} be a function defined by f(x)=4x4x+2f(x)=\frac{4^x}{4^x+2} and M=\int_\limits{f(a)}^{f(1-a)} x \sin ^4(x(1-x)) d x, N=\int_\limits{f(a)}^{f(1-a)} \sin ^4(x(1-x)) d x ; a \neq \frac{1}{2}. If αM=βN,α,βN\alpha M=\beta N, \alpha, \beta \in \mathbb{N}, then the least value of α2+β2\alpha^2+\beta^2 is equal to __________.

Question 61

Four identical particles of mass mm are kept at the four corners of a square. If the gravitational force exerted on one of the masses by the other masses is (22+132)Gm2L2\left(\frac{2 \sqrt{2}+1}{32}\right) \frac{\mathrm{Gm}^2}{L^2}, the length of the sides of the square is

Options:

A)

4L

B)

3L

C)

2L

D)

L2\frac{L}{2}

Question 62

Two charges qq and 3q3 q are separated by a distance 'rr' in air. At a distance xx from charge qq, the resultant electric field is zero. The value of xx is :

Options:

A)

r3(1+3)\frac{r}{3(1+\sqrt{3})}

B)

(1+3)r\frac{(1+\sqrt{3})}{r}

C)

r(1+3)\frac{r}{(1+\sqrt{3})}

D)

r(1+3)r(1+\sqrt{3})

Question 63

The given figure represents two isobaric processes for the same mass of an ideal gas, then

JEE Main 2024 (Online) 31st January Morning Shift Physics - Heat and Thermodynamics Question 10 English

Options:

A)

P2>P1P_2>P_1

B)

P1>P2P_1>P_2

C)

P1=P2P_1=P_2

D)

P2P1P_2 \geq P_1

Question 64

In the given arrangement of a doubly inclined plane two blocks of masses MM and mm are placed. The blocks are connected by a light string passing over an ideal pulley as shown. The coefficient of friction between the surface of the plane and the blocks is 0.25. The value of mm, for which M=10 kgM=10 \mathrm{~kg} will move down with an acceleration of 2 m/s22 \mathrm{~m} / \mathrm{s}^2, is: (take g=10 m/s2\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2 and tan37=3/4)\left.\tan 37^{\circ}=3 / 4\right)

JEE Main 2024 (Online) 31st January Morning Shift Physics - Laws of Motion Question 4 English

Options:

A)

4.5 kg

B)

6.5 kg

C)

9 kg

D)

2.25 kg

Question 65

The relation between time 'tt' and distance 'xx' is t=αx2+βxt=\alpha x^2+\beta x, where α\alpha and β\beta are constants. The relation between acceleration (a)(a) and velocity (v)(v) is :

Options:

A)

a=5αv5a=-5 \alpha v^5

B)

a=3αv2a=-3 \alpha v^2

C)

a=2αv3a=-2 \alpha v^3

D)

a=4αv4a=-4 \alpha v^4

Question 66

An artillery piece of mass M1M_1 fires a shell of mass M2M_2 horizontally. Instantaneously after the firing, the ratio of kinetic energy of the artillery and that of the shell is:

Options:

A)

M1/(M1+M2)M_1 /\left(M_1+M_2\right)

B)

M2M1\frac{M_2}{M_1}

C)

M1M2\frac{M_1}{M_2}

D)

M2/(M1+M2)M_2 /\left(M_1+M_2\right)

Question 67

The parameter that remains the same for molecules of all gases at a given temperature is :

Options:

A)

kinetic energy

B)

mass

C)

momentum

D)

speed

Question 68

A rigid wire consists of a semicircular portion of radius RR and two straight sections. The wire is partially immerged in a perpendicular magnetic field B=B0k^B=B_0 \hat{k} as shown in figure. The magnetic force on the wire if it has a current ii is:

JEE Main 2024 (Online) 31st January Morning Shift Physics - Magnetic Effect of Current Question 5 English

Options:

A)

iBRj^i B R \hat{j}

B)

2iBRj^-2 i B R \hat{j}

C)

2iBRj^2 i B R \hat{j}

D)

iBRj^-i B R \hat{j}

Question 69

When a metal surface is illuminated by light of wavelength λ\lambda, the stopping potential is 8 V8 \mathrm{~V}. When the same surface is illuminated by light of wavelength 3λ3 \lambda, stopping potential is 2 V2 \mathrm{~V}. The threshold wavelength for this surface is:

Options:

A)

3λ\lambda

B)

9λ\lambda

C)

5λ\lambda

D)

4.5λ\lambda

Question 70

The refractive index of a prism with apex angle AA is cotA/2\cot A / 2. The angle of minimum deviation is :

Options:

A)

δm=1803 A\delta_m=180^{\circ}-3 \mathrm{~A}

B)

δm=1804A\delta_m=180^{\circ}-4 A

C)

δm=1802A\delta_m=180^{\circ}-2 A

D)

δm=180A\delta_m=180^{\circ}-A

Question 71

The fundamental frequency of a closed organ pipe is equal to the first overtone frequency of an open organ pipe. If length of the open pipe is 60 cm60 \mathrm{~cm}, the length of the closed pipe will be:

Options:

A)

15 cm

B)

60 cm

C)

45 cm

D)

30 cm

Question 72

If the wavelength of the first member of Lyman series of hydrogen is λ\lambda. The wavelength of the second member will be

Options:

A)

275λ\frac{27}{5} \lambda

B)

527λ\frac{5}{27} \lambda

C)

2732λ\frac{27}{32} \lambda

D)

3227λ\frac{32}{27} \lambda

Question 73

A coil is places perpendicular to a magnetic field of 5000 T5000 \mathrm{~T}. When the field is changed to 3000 T3000 \mathrm{~T} in 2 s2 \mathrm{~s}, an induced emf of 22 V22 \mathrm{~V} is produced in the coil. If the diameter of the coil is 0.02 m0.02 \mathrm{~m}, then the number of turns in the coil is:

Options:

A)

35

B)

70

C)

7

D)

140

Question 74

A coin is placed on a disc. The coefficient of friction between the coin and the disc is μ\mu. If the distance of the coin from the center of the disc is rr, the maximum angular velocity which can be given to the disc, so that the coin does not slip away, is :

Options:

A)

rμg\sqrt{\frac{r}{\mu g}}

B)

μgr\sqrt{\frac{\mu g}{r}}

C)

μgr\frac{\mu g}{r}

D)

μrg\frac{\mu}{\sqrt{r g}}

Question 75

Two conductors have the same resistances at 0C0^{\circ} \mathrm{C} but their temperature coefficients of resistance are α1\alpha_1 and α2\alpha_2. The respective temperature coefficients for their series and parallel combinations are :

Options:

A)

α1+α2,α1α2α1+α2\alpha_1+\alpha_2, \frac{\alpha_1 \alpha_2}{\alpha_1+\alpha_2}

B)

α1+α22,α1+α22\frac{\alpha_1+\alpha_2}{2}, \frac{\alpha_1+\alpha_2}{2}

C)

α1+α2,α1+α22\alpha_1+\alpha_2, \frac{\alpha_1+\alpha_2}{2}

D)

α1+α22,α1+α2\frac{\alpha_1+\alpha_2}{2}, \alpha_1+\alpha_2

Question 76

If the percentage errors in measuring the length and the diameter of a wire are 0.1%0.1 \% each. The percentage error in measuring its resistance will be:

Options:

A)

0.144%

B)

0.2%

C)

0.1%

D)

0.3%

Question 77

A small steel ball is dropped into a long cylinder containing glycerine. Which one of the following is the correct representation of the velocity time graph for the transit of the ball?

Options:

A)

JEE Main 2024 (Online) 31st January Morning Shift Physics - Properties of Matter Question 9 English Option 1

B)

JEE Main 2024 (Online) 31st January Morning Shift Physics - Properties of Matter Question 9 English Option 2

C)

JEE Main 2024 (Online) 31st January Morning Shift Physics - Properties of Matter Question 9 English Option 3

D)

JEE Main 2024 (Online) 31st January Morning Shift Physics - Properties of Matter Question 9 English Option 4

Question 78

A force is represented by F=ax2+bt12F=a x^2+b t^{\frac{1}{2}}

where x=x= distance and t=t= time. The dimensions of b2/ab^2 / a are:

Options:

A)

[ML2 T3]\left[\mathrm{ML}^2 \mathrm{~T}^{-3}\right]

B)

[ML3 T3]\left[\mathrm{ML}^3 \mathrm{~T}^{-3}\right]

C)

[MLT2]\left[M L T^{-2}\right]

D)

[ML1T1]\left[M L^{-1} T^{-1}\right]

Question 79

In a plane EM wave, the electric field oscillates sinusoidally at a frequency of 5×1010 Hz5 \times 10^{10} \mathrm{~Hz} and an amplitude of 50 Vm150 \mathrm{~Vm}^{-1}. The total average energy density of the electromagnetic field of the wave is : [Use ε0=8.85×1012C2/Nm2\varepsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 / \mathrm{Nm}^2 ]

Options:

A)

4.425×108Jm34.425 \times 10^{-8} \mathrm{Jm}^{-3}

B)

2.212×1010Jm32.212 \times 10^{-10} \mathrm{Jm}^{-3}

C)

2.212×108Jm32.212 \times 10^{-8} \mathrm{Jm}^{-3}

D)

1.106×108Jm31.106 \times 10^{-8} \mathrm{Jm}^{-3}

Question 80

Identify the logic operation performed by the given circuit.

JEE Main 2024 (Online) 31st January Morning Shift Physics - Semiconductor Question 5 English

Options:

A)

AND

B)

NOR

C)

OR

D)

NAND

Numerical TypeQuestion 81

A solid circular disc of mass 50 kg50 \mathrm{~kg} rolls along a horizontal floor so that its center of mass has a speed of 0.4 m/s0.4 \mathrm{~m} / \mathrm{s}. The absolute value of work done on the disc to stop it is ________ J.

Numerical TypeQuestion 82

An electron moves through a uniform magnetic field B=B0i^+2B0j^T\vec{B}=B_0 \hat{i}+2 B_0 \hat{j} T. At a particular instant of time, the velocity of electron is u=3i^+5j^ m/s\vec{u}=3 \hat{i}+5 \hat{j} \mathrm{~m} / \mathrm{s}. If the magnetic force acting on electron is F=5ek^N\vec{F}=5 e \hat{k} N, where ee is the charge of electron, then the value of B0B_0 is _________ TT.

Numerical TypeQuestion 83

A parallel plate capacitor with plate separation 5 mm5 \mathrm{~mm} is charged up by a battery. It is found that on introducing a dielectric sheet of thickness 2 mm2 \mathrm{~mm}, while keeping the battery connections intact, the capacitor draws 25%25 \% more charge from the battery than before. The dielectric constant of the sheet is _________.

Numerical TypeQuestion 84

The depth below the surface of sea to which a rubber ball be taken so as to decrease its volume by 0.02%0.02 \% is _______ mm.

(Take density of sea water =103kgm3=10^3 \mathrm{kgm}^{-3}, Bulk modulus of rubber =9×108 Nm2=9 \times 10^8 \mathrm{~Nm}^{-2}, and g=10 ms2g=10 \mathrm{~ms}^{-2})

Numerical TypeQuestion 85

A body starts falling freely from height HH hits an inclined plane in its path at height hh. As a result of this perfectly elastic impact, the direction of the velocity of the body becomes horizontal. The value of Hh\frac{H}{h} for which the body will take the maximum time to reach the ground is __________.

Numerical TypeQuestion 86

A particle performs simple harmonic motion with amplitude AA. Its speed is increased to three times at an instant when its displacement is 2A3\frac{2 A}{3}. The new amplitude of motion is nA3\frac{n A}{3}. The value of nn is ___________.

Numerical TypeQuestion 87

The mass defect in a particular reaction is 0.4 g0.4 \mathrm{~g}. The amount of energy liberated is n×107 kWhn \times 10^7 \mathrm{~kWh}, where n=n= __________. (speed of light =3×108 m/s)\left.=3 \times 10^8 \mathrm{~m} / \mathrm{s}\right)

Numerical TypeQuestion 88

A small square loop of wire of side ll is placed inside a large square loop of wire of side L(L=l2)L\left(L=l^2\right). The loops are coplanar and their centers coincide. The value of the mutual inductance of the system is x×107H\sqrt{x} \times 10^{-7} \mathrm{H}, where x=x= _________.

Numerical TypeQuestion 89

Equivalent resistance of the following network is __________ Ω\Omega.

JEE Main 2024 (Online) 31st January Morning Shift Physics - Current Electricity Question 12 English

Numerical TypeQuestion 90

Two waves of intensity ratio 1:91: 9 cross each other at a point. The resultant intensities at that point, when (a) Waves are incoherent is I1I_1 (b) Waves are coherent is I2I_2 and differ in phase by 6060^{\circ}. If I1I2=10x\frac{I_1}{I_2}=\frac{10}{x} then x=x= _________.