Jeehub Logo

Jan 30, 2024

JEE Mains

Shift: 1

Total Questions Available: 90

Question 1

Aluminium chloride in acidified aqueous solution forms an ion having geometry

Options:

A)

Square planar

B)

Octahedral

C)

Trigonal bipyramidal

D)

Tetrahedral

Question 2

Example of vinylic halide is :

Options:

A)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 2 English Option 1

B)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 2 English Option 2

C)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 2 English Option 3

D)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 2 English Option 4

Question 3

Given below are two statements :

Statement (I) : The gas liberated on warming a salt with dil H2SO4\mathrm{H}_2 \mathrm{SO}_4, turns a piece of paper dipped in lead acetate into black, it is a confirmatory test for sulphide ion.

Statement (II) : In statement-I the colour of paper turns black because of formation of lead sulphite. In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Both Statement I and Statement II are false

B)

Statement I is true but Statement II is false

C)

Both Statement I and Statement II are true

D)

Statement I is false but Statement II is true

Question 4

The final product A, formed in the following multistep reaction sequence is :

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 3 English

Options:

A)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 3 English Option 1

B)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 3 English Option 2

C)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 3 English Option 3

D)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 3 English Option 4

Question 5

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 2 English

This reduction reaction is known as:

Options:

A)

Wolff-Kishner reduction

B)

Etard reduction

C)

Stephen reduction

D)

Rosenmund reduction

Question 6

Compound A formed in the following reaction reacts with B gives the product C. Find out A and B.

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Hydrocarbons Question 2 English

Options:

A)

A=CH3CCNa+,B=CH3CH2CH2Br\mathrm{A}=\mathrm{CH}_3-\mathrm{C} \equiv \stackrel{-}{\mathrm{C}} \mathrm{Na}^{+}, \mathrm{B}=\mathrm{CH}_3-\mathrm{CH}_2-\mathrm{CH}_2-\mathrm{Br}

B)

A=CH3CH=CH2, B=CH3CH2CH2Br\mathrm{A}=\mathrm{CH}_3-\mathrm{CH}=\mathrm{CH}_2, \mathrm{~B}=\mathrm{CH}_3-\mathrm{CH}_2-\mathrm{CH}_2-\mathrm{Br}

C)

A=CH3CCNa+,B=CH3CH2CH3\mathrm{A}=\mathrm{CH}_3-\mathrm{C} \equiv \stackrel{-}{\mathrm{C}} \mathrm{Na}^{+}, \mathrm{B}=\mathrm{CH}_3-\mathrm{CH}_2-\mathrm{CH}_3

D)

A=CH3CH2CH3, B=CH3CCH\mathrm{A}=\mathrm{CH}_3-\mathrm{CH}_2-\mathrm{CH}_3, \mathrm{~B}=\mathrm{CH}_3-\mathrm{C} \equiv \mathrm{CH}

Question 7

Which of the following molecule/species is most stable?

Options:

A)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Basics of Organic Chemistry Question 1 English Option 1

B)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Basics of Organic Chemistry Question 1 English Option 2

C)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Basics of Organic Chemistry Question 1 English Option 3

D)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Basics of Organic Chemistry Question 1 English Option 4

Question 8

What happens to freezing point of benzene when small quantity of napthalene is added to benzene?

Options:

A)

Increases

B)

Decreases

C)

Remains unchanged

D)

First decreases and then increases

Question 9

Match List I with List II.

List I
Molecule
List II
Shape
(A) BrF5\mathrm{BrF_5} (I) T-Shape
(B) H2O\mathrm{H_2O} (II) See saw
(C) ClF3\mathrm{ClF_3} (III) Bent
(D) SF4\mathrm{SF_4} (IV) Square pyramidal

Choose the correct answer from the options given below :

Options:

A)

(A)-(I), (B)-(II), (C)-(IV), (D)-(III)

B)

(A)-(IV), (B)-(III), (C)-(I), (D)-(II)

C)

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

D)

(A)-(II), (B)-(I), (C)-(III), (D)-(IV)

Question 10

Match List I with List II.

List I
Species
List II
Electronic distribution
(A) Cr+2\mathrm{Cr^{+2}} (I) 3d8\mathrm{3d^8}
(B) Mn+\mathrm{Mn^+} (II) 3d34s1\mathrm{3d^34s^1}
(C) Ni+2\mathrm{Ni^{+2}} (III) 3d4\mathrm{3d^4}
(D) V+\mathrm{V^+} (IV) 3d54s1\mathrm{3d^54s^1}

Choose the correct answer from the options given below :

Options:

A)

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

B)

(A)-(I), (B)-(II), (C)-(III), (D)-(IV)

C)

(A)-(IV), (B)-(III), (C)-(I), (D)-(II)

D)

(A)-(II), (B)-(I), (C)-(IV), (D)-(III)

Question 11

The Lassiagne's extract is boiled with dil HNO3\mathrm{HNO}_3 before testing for halogens because,

Options:

A)

Silver halides are soluble in HNO3\mathrm{HNO}_3.

B)

AgCN\mathrm{AgCN} is soluble in HNO3\mathrm{HNO}_3.

C)

Na2S\mathrm{Na}_2 \mathrm{S} and NaCN\mathrm{NaCN} are decomposed by HNO3\mathrm{HNO}_3.

D)

Ag2S\mathrm{Ag}_2 \mathrm{S} is soluble in HNO3\mathrm{HNO}_3.

Question 12

Given below are two statements :

Statement (I) : The orbitals having same energy are called as degenerate orbitals.

Statement (II) : In hydrogen atom, 3p and 3d orbitals are not degenerate orbitals.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Statement I is true but Statement II is false

B)

Statement I is false but Statement II is true

C)

Both Statement I and Statement II are false

D)

Both Statement I and Statement II are true

Question 13

Sugar which does not give reddish brown precipitate with Fehling's reagent, is :

Options:

A)

Glucose

B)

Sucrose

C)

Lactose

D)

Maltose

Question 14

In the given reactions, identify the reagent A and reagent B.

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Hydrocarbons Question 1 English

Options:

A)

ACrO3 BCrO3\mathrm{A}-\mathrm{CrO}_3 \quad \mathrm{~B}-\mathrm{CrO}_3

B)

ACrO3 BCrO2Cl2\mathrm{A}-\mathrm{CrO}_3 \quad \mathrm{~B}-\mathrm{CrO}_2 \mathrm{Cl}_2

C)

A- CrO2Cl2 BCrO3\mathrm{CrO}_2 \mathrm{Cl}_2 \quad \mathrm{~B}-\mathrm{CrO}_3

D)

ACrO2Cl2 BCrO2Cl2\mathrm{A}-\mathrm{CrO}_2 \mathrm{Cl}_2 \quad \mathrm{~B}-\mathrm{CrO}_2 \mathrm{Cl}_2

Question 15

Diamagnetic Lanthanoid ions are :

Options:

A)

La3+& Ce4+\mathrm{La}^{3+} \& \mathrm{~Ce}^{4+}

B)

Nd3+& Ce4+\mathrm{Nd}^{3+} \& \mathrm{~Ce}^{4+}

C)

Lu3+& Eu3+\mathrm{Lu}^{3+} \& \mathrm{~Eu}^{3+}

D)

Nd3+& Eu3+\mathrm{Nd}^{3+} \& \mathrm{~Eu}^{3+}

Question 16

Choose the correct statements from the following :

(A) Ethane-1, 2-diamine is a chelating ligand.

(B) Metallic aluminium is produced by electrolysis of aluminium oxide in presence of cryolite.

(C) Cyanide ion is used as ligand for leaching of silver.

(D) Phosphine act as a ligand in Wilkinson catalyst.

(E) The stability constants of Ca2+\mathrm{Ca}^{2+} and Mg2+\mathrm{Mg}^{2+} are similar with EDTA complexes.

Choose the correct answer from the options given below :

Options:

A)

(B), (C), (E) only

B)

(A), (D), (E) only

C)

(C), (D), (E) only

D)

(A), (B), (C) only

Question 17

Following is a confirmatory test for aromatic primary amines. Identify reagent (A) and (B).

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Compounds Containing Nitrogen Question 2 English

Options:

A)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Compounds Containing Nitrogen Question 2 English Option 1

B)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Compounds Containing Nitrogen Question 2 English Option 2

C)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Compounds Containing Nitrogen Question 2 English Option 3

D)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Compounds Containing Nitrogen Question 2 English Option 4

Question 18

Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : CH2=CHCH2Cl\mathrm{CH}_2=\mathrm{CH}-\mathrm{CH}_2-\mathrm{Cl} is an example of allyl halide.

Reason (R) : Allyl halides are the compounds in which the halogen atom is attached to sp2\mathrm{sp}^2 hybridised carbon atom.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

(A) is true but (R) is false

B)

(A) is false but (R) is true

C)

Both (A) and (R) are true but (R) is not the correct explanation of (A)

D)

Both (A) and (R) are true and (R) is the correct explanation of (A)

Question 19

Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : There is a considerable increase in covalent radius from N\mathrm{N} to P\mathrm{P}. However from As to Bi only a small increase in covalent radius is observed.

Reason (R) : Covalent and ionic radii in a particular oxidation state increases down the group. In the light of the above statements, choose the most appropriate answer from the options given below:

Options:

A)

(A) is false but (R) is true

B)

Both (A) and (R) are true and (R) is the correct explanation of (A)

C)

Both (A) and (R) are true but (R) is not the correct explanation of (A)

D)

(A) is true but (R) is false

Question 20

Structure of 4-Methylpent-2-enal is :

Options:

A)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 1 English Option 1

B)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 1 English Option 2

C)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 1 English Option 3

D)

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 1 English Option 4

Numerical TypeQuestion 21

The total number of molecular orbitals formed from 2s2 \mathrm{s} and 2p2 \mathrm{p} atomic orbitals of a diatomic molecule is __________.

Numerical TypeQuestion 22

The mass of sodium acetate (CH3COONa)\left(\mathrm{CH}_3 \mathrm{COONa}\right) required to prepare 250 mL250 \mathrm{~mL} of 0.35 M0.35 \mathrm{~M} aqueous solution is ________ g. (Molar mass of CH3COONa\mathrm{CH}_3 \mathrm{COONa} is 82.02 g mol182.02 \mathrm{~g} \mathrm{~mol}^{-1})

Numerical TypeQuestion 23

0.05 cm0.05 \mathrm{~cm} thick coating of silver is deposited on a plate of 0.05 m20.05 \mathrm{~m}^2 area. The number of silver atoms deposited on plate are ________ ×1023\times 10^{23}. (At mass Ag=108, d=7.9 g cm3\mathrm{Ag}=108, \mathrm{~d}=7.9 \mathrm{~g} \mathrm{~cm}^{-3})

Numerical TypeQuestion 24

The compound formed by the reaction of ethanal with semicarbazide contains _________ number of nitrogen atoms.

Numerical TypeQuestion 25

The pH\mathrm{pH} at which Mg(OH)2[ Ksp=1×1011]\mathrm{Mg}(\mathrm{OH})_2\left[\mathrm{~K}_{\mathrm{sp}}=1 \times 10^{-11}\right] begins to precipitate from a solution containing 0.10 M Mg2+0.10 \mathrm{~M} \mathrm{~Mg}^{2+} ions is __________.

Numerical TypeQuestion 26

2MnO4+bI+cH2OxI2+yMnO2+zOH2 \mathrm{MnO}_4^{-}+\mathrm{bI}^{-}+\mathrm{cH}_2 \mathrm{O} \rightarrow x \mathrm{I}_2+y \mathrm{MnO}_2+z \overline{\mathrm{O}} \mathrm{H}

If the above equation is balanced with integer coefficients, the value of zz is ________.

Numerical TypeQuestion 27

JEE Main 2024 (Online) 30th January Morning Shift Chemistry - Thermodynamics Question 1 English

An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path ABCA\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A} as shown in the diagram above. The total work done in the process is __________ J.

Numerical TypeQuestion 28

The rate of First order reaction is 0.04 mol L1 s10.04 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} at 10 minutes and 0.03 mol L1 s10.03 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} at 20 minutes after initiation. Half life of the reaction is _______ minutes. (Given log2=0.3010,log3=0.4771\log 2=0.3010, \log 3=0.4771)

Numerical TypeQuestion 29

On a thin layer chromatographic plate, an organic compound moved by 3.5 cm3.5 \mathrm{~cm}, while the solvent moved by 5 cm5 \mathrm{~cm}. The retardation factor of the organic compound is ________ ×101\times 10^{-1}.

Numerical TypeQuestion 30

If IUPAC name of an element is "Unununnium" then the element belongs to nth group of Periodic table. The value of n is ________.

Question 31

Let g:RRg: \mathbf{R} \rightarrow \mathbf{R} be a non constant twice differentiable function such that g(12)=g(32)\mathrm{g}^{\prime}\left(\frac{1}{2}\right)=\mathrm{g}^{\prime}\left(\frac{3}{2}\right). If a real valued function ff is defined as f(x)=12[g(x)+g(2x)]f(x)=\frac{1}{2}[g(x)+g(2-x)], then

Options:

A)

f(x)=0f^{\prime \prime}(x)=0 for atleast two xx in (0,2)(0,2)

B)

f(32)+f(12)=1f^{\prime}\left(\frac{3}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)=1

C)

f(x)=0f^{\prime \prime}(x)=0 for no xx in (0,1)(0,1)

D)

f(x)=0f^{\prime \prime}(x)=0 for exactly one xx in (0,1)(0,1)

Question 32

The value of \lim _\limits{n \rightarrow \infty} \sum_\limits{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)} is :

Options:

A)

π8(23+3)\frac{\pi}{8(2 \sqrt{3}+3)}

B)

(23+3)π24\frac{(2 \sqrt{3}+3) \pi}{24}

C)

13π8(43+3)\frac{13 \pi}{8(4 \sqrt{3}+3)}

D)

13(233)π8\frac{13(2 \sqrt{3}-3) \pi}{8}

Question 33

If the circles (x+1)2+(y+2)2=r2(x+1)^2+(y+2)^2=r^2 and x2+y24x4y+4=0x^2+y^2-4 x-4 y+4=0 intersect at exactly two distinct points, then

Options:

A)

12<r<7\frac{1}{2}<\mathrm{r}<7

B)

3<r<73<\mathrm{r}<7

C)

5<r<95<\mathrm{r}<9

D)

0<r<70<\mathrm{r}<7

Question 34

Let a=a1i^+a2j^+a3k^\overrightarrow{\mathrm{a}}=\mathrm{a}_1 \hat{i}+\mathrm{a}_2 \hat{j}+\mathrm{a}_3 \hat{k} and b=b1i^+b2j^+b3k^\overrightarrow{\mathrm{b}}=\mathrm{b}_1 \hat{i}+\mathrm{b}_2 \hat{j}+\mathrm{b}_3 \hat{k} be two vectors such that a=1,ab=2|\overrightarrow{\mathrm{a}}|=1, \vec{a} \cdot \vec{b}=2 and b=4|\vec{b}|=4. If c=2(a×b)3b\vec{c}=2(\vec{a} \times \vec{b})-3 \vec{b}, then the angle between b\vec{b} and c\vec{c} is equal to:

Options:

A)

cos1(13)\cos ^{-1}\left(-\frac{1}{\sqrt{3}}\right)

B)

cos1(23)\cos ^{-1}\left(\frac{2}{3}\right)

C)

cos1(23)\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)

D)

cos1(32)\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)

Question 35

The maximum area of a triangle whose one vertex is at (0,0)(0,0) and the other two vertices lie on the curve y=2x2+54y=-2 x^2+54 at points (x,y)(x, y) and (x,y)(-x, y), where y>0y>0, is :

Options:

A)

108

B)

122

C)

88

D)

92

Question 36

If f(x)=\left|\begin{array}{ccc} 2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\ 3+2 \cos ^4 x & 2 \sin ^4 x & \sin ^2 2 x \\ 2 \cos ^4 x & 3+2 \sin ^4 x & \sin ^2 2 x \end{array}\right|,\( then \)\frac{1}{5} f^{\prime}(0)= is equal to :

Options:

A)

2

B)

1

C)

0

D)

6

Question 37

Let (α,β,γ)(\alpha, \beta, \gamma) be the foot of perpendicular from the point (1,2,3)(1,2,3) on the line x+35=y12=z+43\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}. Then 19(α+β+γ)19(\alpha+\beta+\gamma) is equal to :

Options:

A)

99

B)

102

C)

101

D)

100

Question 38

A line passing through the point A(9,0)\mathrm{A}(9,0) makes an angle of 3030^{\circ} with the positive direction of xx-axis. If this line is rotated about A through an angle of 1515^{\circ} in the clockwise direction, then its equation in the new position is :

Options:

A)

y3+2+x=9\frac{y}{\sqrt{3}+2}+x=9

B)

x3+2+y=9\frac{x}{\sqrt{3}+2}+y=9

C)

x32+y=9\frac{x}{\sqrt{3}-2}+y=9

D)

y32+x=9\frac{y}{\sqrt{3}-2}+x=9

Question 39

Consider the system of linear equations x+y+z=4μ,x+2y+2λz=10μ,x+3y+4λ2z=μ2+15x+y+z=4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15 where λ,μR\lambda, \mu \in \mathbf{R}. Which one of the following statements is NOT correct ?

Options:

A)

The system has unique solution if λ12\lambda \neq \frac{1}{2} and μ1,15\mu \neq 1,15

B)

The system has infinite number of solutions if λ=12\lambda=\frac{1}{2} and μ=15\mu=15

C)

The system is consistent if λ12\lambda \neq \frac{1}{2}

D)

The system is inconsistent if λ=12\lambda=\frac{1}{2} and μ1\mu \neq 1

Question 40

Let f:[π2,π2]Rf:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbf{R} be a differentiable function such that f(0)=12f(0)=\frac{1}{2}. If the \lim _\limits{x \rightarrow 0} \frac{x \int_0^x f(\mathrm{t}) \mathrm{dt}}{\mathrm{e}^{x^2}-1}=\alpha, then 8α28 \alpha^2 is equal to :

Options:

A)

4

B)

2

C)

1

D)

16

Question 41

If the length of the minor axis of an ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :

Options:

A)

13\frac{1}{\sqrt{3}}

B)

25\frac{2}{\sqrt{5}}

C)

32\frac{\sqrt{3}}{2}

D)

53\frac{\sqrt{5}}{3}

Question 42

Let M denote the median of the following frequency distribution

Class 0 - 4 4 - 8 8 - 12 12 - 16 16 - 20
Frequency 3 9 10 8 6

Then 20M is equal to :

Options:

A)

104

B)

52

C)

208

D)

416

Question 43

Two integers xx and yy are chosen with replacement from the set {0,1,2,3,,10}\{0,1,2,3, \ldots, 10\}. Then the probability that xy>5|x-y|>5, is :

Options:

A)

31121\frac{31}{121}

B)

60121\frac{60}{121}

C)

62121\frac{62}{121}

D)

30121\frac{30}{121}

Question 44

Let A(2,3,5)A(2,3,5) and C(3,4,2)C(-3,4,-2) be opposite vertices of a parallelogram ABCDA B C D. If the diagonal BD=i^+2j^+3k^\overrightarrow{\mathrm{BD}}=\hat{i}+2 \hat{j}+3 \hat{k}, then the area of the parallelogram is equal to :

Options:

A)

12410\frac{1}{2} \sqrt{410}

B)

12306\frac{1}{2} \sqrt{306}

C)

12586\frac{1}{2} \sqrt{586}

D)

12474\frac{1}{2} \sqrt{474}

Question 45

Let y=y(x)y=y(x) be the solution of the differential equation secx dy+{2(1x)tanx+x(2x)}dx=0\sec x \mathrm{~d} y+\{2(1-x) \tan x+x(2-x)\} \mathrm{d} x=0 such that y(0)=2y(0)=2. Then y(2)y(2) is equal to:

Options:

A)

2{sin(2)+1}2\{\sin (2)+1\}

B)

2

C)

1

D)

2{1sin(2)}2\{1-\sin (2)\}

Question 46

If z=x+iy,xy0z=x+i y, x y \neq 0, satisfies the equation z2+izˉ=0z^2+i \bar{z}=0, then z2\left|z^2\right| is equal to :

Options:

A)

9

B)

14\frac{1}{4}

C)

4

D)

1

Question 47

If 2sin3x+sin2xcosx+4sinx4=02 \sin ^3 x+\sin 2 x \cos x+4 \sin x-4=0 has exactly 3 solutions in the interval [0,nπ2],nN\left[0, \frac{\mathrm{n} \pi}{2}\right], \mathrm{n} \in \mathrm{N}, then the roots of the equation x2+nx+(n3)=0x^2+\mathrm{n} x+(\mathrm{n}-3)=0 belong to :

Options:

A)

(0,)(0, \infty)

B)

Z

C)

(172,172)\left(-\frac{\sqrt{17}}{2}, \frac{\sqrt{17}}{2}\right)

D)

(,0)(-\infty, 0)

Question 48

If the domain of the function f(x)=cos1(2x4)+{loge(3x)}1f(x)=\cos ^{-1}\left(\frac{2-|x|}{4}\right)+\left\{\log _e(3-x)\right\}^{-1} is [α,β){γ}[-\alpha, \beta)-\{\gamma\}, then α+β+γ\alpha+\beta+\gamma is equal to :

Options:

A)

11

B)

12

C)

9

D)

8

Question 49

Let SnS_n denote the sum of first nn terms of an arithmetic progression. If S20=790S_{20}=790 and S10=145S_{10}=145, then S15S5\mathrm{S}_{15}-\mathrm{S}_5 is :

Options:

A)

405

B)

390

C)

410

D)

395

Question 50

The area (in square units) of the region bounded by the parabola y2=4(x2)y^2=4(x-2) and the line y=2x8y=2 x-8, is :

Options:

A)

7

B)

8

C)

9

D)

6

Numerical TypeQuestion 51

A group of 40 students appeared in an examination of 3 subjects - Mathematics, Physics and Chemistry. It was found that all students passed in atleast one of the subjects, 20 students passed in Mathematics, 25 students passed in Physics, 16 students passed in Chemistry, atmost 11 students passed in both Mathematics and Physics, atmost 15 students passed in both Physics and Chemistry, atmost 15 students passed in both Mathematics and Chemistry. The maximum number of students passed in all the three subjects is _________.

Numerical TypeQuestion 52

Let y=y(x)y=y(x) be the solution of the differential equation (1x2)dy=[xy+(x3+2)3(1x2)]dx,1<x<1,y(0)=0\left(1-x^2\right) \mathrm{d} y=\left[x y+\left(x^3+2\right) \sqrt{3\left(1-x^2\right)}\right] \mathrm{d} x, -1< x<1, y(0)=0. If y(12)=mn,my\left(\frac{1}{2}\right)=\frac{\mathrm{m}}{\mathrm{n}}, \mathrm{m} and n\mathrm{n} are co-prime numbers, then m+n\mathrm{m}+\mathrm{n} is equal to __________.

Numerical TypeQuestion 53

The value of 9 \int_\limits0^9\left[\sqrt{\frac{10 x}{x+1}}\right] \mathrm{d} x, where [t][t] denotes the greatest integer less than or equal to tt, is

Numerical TypeQuestion 54

Let α,βN\alpha, \beta \in \mathbf{N} be roots of the equation x270x+λ=0x^2-70 x+\lambda=0, where λ2,λ3N\frac{\lambda}{2}, \frac{\lambda}{3} \notin \mathbf{N}. If λ\lambda assumes the minimum possible value, then (α1+β1)(λ+35)αβ\frac{(\sqrt{\alpha-1}+\sqrt{\beta-1})(\lambda+35)}{|\alpha-\beta|} is equal to :

Numerical TypeQuestion 55

\text { Number of integral terms in the expansion of }\left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824} \text { is equal to _________. }

Numerical TypeQuestion 56

Let the latus rectum of the hyperbola x29y2b2=1\frac{x^2}{9}-\frac{y^2}{b^2}=1 subtend an angle of π3\frac{\pi}{3} at the centre of the hyperbola. If b2\mathrm{b}^2 is equal to l m(1+n)\frac{l}{\mathrm{~m}}(1+\sqrt{\mathrm{n}}), where ll and m\mathrm{m} are co-prime numbers, then l2+m2+n2\mathrm{l}^2+\mathrm{m}^2+\mathrm{n}^2 is equal to ________.

Numerical TypeQuestion 57

If d1\mathrm{d}_1 is the shortest distance between the lines x+1=2y=12z,x=y+2=6z6x+1=2 y=-12 z, x=y+2=6 z-6 and d2\mathrm{d}_2 is the shortest distance between the lines x12=y+87=z45,x12=y21=z63\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5}, \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}, then the value of 323 d1 d2\frac{32 \sqrt{3} \mathrm{~d}_1}{\mathrm{~d}_2} is :

Numerical TypeQuestion 58

Let α=12+42+82+132+192+262+\alpha=1^2+4^2+8^2+13^2+19^2+26^2+\ldots upto 10 terms and \beta=\sum_\limits{n=1}^{10} n^4. If 4αβ=55k+404 \alpha-\beta=55 k+40, then k\mathrm{k} is equal to __________.

Numerical TypeQuestion 59

Let A={1,2,3,,7}\mathrm{A}=\{1,2,3, \ldots, 7\} and let P(A)\mathrm{P}(\mathrm{A}) denote the power set of A\mathrm{A}. If the number of functions f:AP(A)f: \mathrm{A} \rightarrow \mathrm{P}(\mathrm{A}) such that af(a),aA\mathrm{a} \in f(\mathrm{a}), \forall \mathrm{a} \in \mathrm{A} is mn,m\mathrm{m}^{\mathrm{n}}, \mathrm{m} and nN\mathrm{n} \in \mathrm{N} and m\mathrm{m} is least, then m+n\mathrm{m}+\mathrm{n} is equal to _________.

Numerical TypeQuestion 60

If the function

f(x)={1x,x2ax2+2 b,x<2f(x)= \begin{cases}\frac{1}{|x|}, & |x| \geqslant 2 \\ \mathrm{a} x^2+2 \mathrm{~b}, & |x|<2\end{cases}

is differentiable on R\mathbf{R}, then 48(a+b)48(a+b) is equal to __________.

Question 61

The ratio of the magnitude of the kinetic energy to the potential energy of an electron in the 5th excited state of a hydrogen atom is :

Options:

A)

4

B)

1

C)

12\frac{1}{2}

D)

14\frac{1}{4}

Question 62

The work function of a substance is 3.0 eV3.0 \mathrm{~eV}. The longest wavelength of light that can cause the emission of photoelectrons from this substance is approximately;

Options:

A)

215 nm

B)

400 nm

C)

414 nm

D)

200 nm

Question 63

Primary coil of a transformer is connected to 220 V220 \mathrm{~V} ac. Primary and secondary turns of the transforms are 100 and 10 respectively. Secondary coil of transformer is connected to two series resistances shown in figure. The output voltage (V0)\left(V_0\right) is :

JEE Main 2024 (Online) 30th January Morning Shift Physics - Alternating Current Question 1 English

Options:

A)

7 V

B)

44 V

C)

22 V

D)

15 V

Question 64

A particle of mass m\mathrm{m} is projected with a velocity 'u\mathrm{u}' making an angle of 3030^{\circ} with the horizontal. The magnitude of angular momentum of the projectile about the point of projection when the particle is at its maximum height h\mathrm{h} is :

Options:

A)

mu32 g\frac{\mathrm{mu}^3}{\sqrt{2} \mathrm{~g}}

B)

zero

C)

32mu2 g\frac{\sqrt{3}}{2} \frac{\mathrm{mu}^2}{\mathrm{~g}}

D)

316mu3 g\frac{\sqrt{3}}{16} \frac{\mathrm{mu}^3}{\mathrm{~g}}

Question 65

The diffraction pattern of a light of wavelength 400 nm400 \mathrm{~nm} diffracting from a slit of width 0.2 mm0.2 \mathrm{~mm} is focused on the focal plane of a convex lens of focal length 100 cm100 \mathrm{~cm}. The width of the 1st 1^{\text {st }} secondary maxima will be :

Options:

A)

2 mm

B)

0.2 mm

C)

0.02 mm

D)

2 cm

Question 66

A series L.R circuit connected with an ac source E=(25sin1000t)VE=(25 \sin 1000 t) V has a power factor of 12\frac{1}{\sqrt{2}}. If the source of emf is changed to E=(20sin2000t)V\mathrm{E}=(20 \sin 2000 \mathrm{t}) \mathrm{V}, the new power factor of the circuit will be :

Options:

A)

13\frac{1}{\sqrt{3}}

B)

12\frac{1}{\sqrt{2}}

C)

15\frac{1}{\sqrt{5}}

D)

17\frac{1}{\sqrt{7}}

Question 67

The electrostatic potential due to an electric dipole at a distance 'rr' varies as :

Options:

A)

1r3\frac{1}{r^3}

B)

1r\frac{1}{\mathrm{r}}

C)

1r2\frac{1}{r^2}

D)

r

Question 68

A particle is placed at the point AA of a frictionless track ABCA B C as shown in figure. It is gently pushed towards right. The speed of the particle when it reaches the point B is :

(Take g=10 m/s2g=10 \mathrm{~m} / \mathrm{s}^2).

JEE Main 2024 (Online) 30th January Morning Shift Physics - Work Power & Energy Question 1 English

Options:

A)

210 m/s2 \sqrt{10} \mathrm{~m} / \mathrm{s}

B)

10 m/s10 \mathrm{~m} / \mathrm{s}

C)

10 m/s\sqrt{10} \mathrm{~m} / \mathrm{s}

D)

20 m/s20 \mathrm{~m} / \mathrm{s}

Question 69

Two thermodynamical processes are shown in the figure. The molar heat capacity for process A and B are CA\mathrm{C}_{\mathrm{A}} and CB\mathrm{C}_{\mathrm{B}}. The molar heat capacity at constant pressure and constant volume are represented by CP\mathrm{C_P} and CV\mathrm{C_V}, respectively. Choose the correct statement.

JEE Main 2024 (Online) 30th January Morning Shift Physics - Heat and Thermodynamics Question 1 English

Options:

A)

CP>CB>CA>CV\mathrm{C_P>C_B>C_A>C_V}

B)

CP>CV>CA=CB\mathrm{C}_{\mathrm{P}}>\mathrm{C}_{\mathrm{V}}>\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{B}}

C)

CA=0\mathrm{C}_{\mathrm{A}}=0 and CB=\mathrm{C}_{\mathrm{B}}=\infty

D)

CA=,CB=0\mathrm{C_A=\infty, C_B=0}

Question 70

The electric field of an electromagnetic wave in free space is represented as E=E0cos(ωtkz)i^\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \cos (\omega \mathrm{t}-\mathrm{kz}) \hat{i}. The corresponding magnetic induction vector will be :

Options:

A)

B=E0Ccos(ωt+kz)j^\overrightarrow{\mathrm{B}}=\mathrm{E}_0 \mathrm{C} \cos (\omega \mathrm{t}+\mathrm{k} z) \hat{j}

B)

B=E0Ccos(ωtkz)j^\overrightarrow{\mathrm{B}}=\frac{\mathrm{E}_0}{\mathrm{C}} \cos (\omega \mathrm{t}-\mathrm{kz}) \hat{j}

C)

B=E0Ccos(ωtkz)j^\overrightarrow{\mathrm{B}}=\mathrm{E}_0 \mathrm{C} \cos (\omega \mathrm{t}-\mathrm{k} z) \hat{j}

D)

B=E0Ccos(ωt+kz)j^\overrightarrow{\mathrm{B}}=\frac{\mathrm{E}_0}{\mathrm{C}} \cos (\omega \mathrm{t}+\mathrm{kz}) \hat{j}

Question 71

At which temperature the r.m.s. velocity of a hydrogen molecule equal to that of an oxygen molecule at 47C47^{\circ} \mathrm{C} ?

Options:

A)

20 K

B)

80 K

C)

4 K

D)

73-73 K

Question 72

Match List I with List II.

List I List II
(A) Coefficient of viscosity (I) [ML2 T2]\left[\mathrm{M} \mathrm{L}^2 \mathrm{~T}^{-2}\right]
(B) Surface tension (II) [ML2 T1]\left[\mathrm{M} \mathrm{L}^2 \mathrm{~T}^{-1}\right]
(C) Angular momentum (III) [ML1 T1]\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-1}\right]
(D) Rotational kinetic energy (IV) [ML0 T2]\left[\mathrm{M} \mathrm{L}^0 \mathrm{~T}^{-2}\right]

Choose the correct answer from the options given below :

Options:

A)

(A)-(II), (B)-(I), (C)-(IV), (D)-(III)

B)

(A)-(I), (B)-(II), (C)-(III), (D)-(IV)

C)

(A)-(IV), (B)-(III), (C)-(II), (D)-(I)

D)

(A)-(III), (B)-(IV), (C)-(II), (D)-(I)

Question 73

A potential divider circuit is shown in figure. The output voltage V0_0 is :

JEE Main 2024 (Online) 30th January Morning Shift Physics - Current Electricity Question 3 English

Options:

A)

2 mV

B)

4 V

C)

0.5 V

D)

12 mV

Question 74

A Zener diode of breakdown voltage 10 V10 \mathrm{~V} is used as a voltage regulator as shown in the figure. The current through the Zener diode is :

JEE Main 2024 (Online) 30th January Morning Shift Physics - Semiconductor Question 1 English

Options:

A)

0

B)

30 mA

C)

20 mA

D)

50 mA

Question 75

Two insulated circular loop A and B of radius 'aa' carrying a current of 'I\mathrm{I}' in the anti clockwise direction as shown in the figure. The magnitude of the magnetic induction at the centre will be :

JEE Main 2024 (Online) 30th January Morning Shift Physics - Magnetic Effect of Current Question 1 English

Options:

A)

2μ0Ia\frac{\sqrt{2} \mu_0 I}{a}

B)

μ0I2a\frac{\mu_0 I}{\sqrt{2} a}

C)

μ0I2a\frac{\mu_0 \mathrm{I}}{2 \mathrm{a}}

D)

2μ0Ia\frac{2 \mu_0 I}{a}

Question 76

All surfaces shown in figure are assumed to be frictionless and the pulleys and the string are light. The acceleration of the block of mass 2 kg2 \mathrm{~kg} is :

JEE Main 2024 (Online) 30th January Morning Shift Physics - Laws of Motion Question 1 English

Options:

A)

g2\mathrm{\frac{g}{2}}

B)

g4\mathrm{\frac{g}{4}}

C)

g\mathrm{g}

D)

g3\mathrm{\frac{g}{3}}

Question 77

An electric toaster has resistance of 60Ω60 \Omega at room temperature (27C)\left(27^{\circ} \mathrm{C}\right). The toaster is connected to a 220 V220 \mathrm{~V} supply. If the current flowing through it reaches 2.75 A2.75 \mathrm{~A}, the temperature attained by toaster is around : ( if α=2×104\alpha=2 \times 10^{-4}/C^\circ \mathrm{C})

Options:

A)

1235 ^\circC

B)

1667 ^\circC

C)

694 ^\circC

D)

1694 ^\circC

Question 78

A spherical body of mass 100 g100 \mathrm{~g} is dropped from a height of 10 m10 \mathrm{~m} from the ground. After hitting the ground, the body rebounds to a height of 5 m5 \mathrm{~m}. The impulse of force imparted by the ground to the body is given by : (given, g=9.8 m/s2\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^2)

Options:

A)

43.2 kg ms143.2 \mathrm{~kg} \mathrm{~ms}^{-1}

B)

2.39 kg ms12.39 \mathrm{~kg} \mathrm{~ms}^{-1}

C)

4.32 kg ms14.32 \mathrm{~kg} \mathrm{~ms}^{-1}

D)

23.9 kg ms123.9 \mathrm{~kg} \mathrm{~ms}^{-1}

Question 79

Young's modules of material of a wire of length 'LL' and cross-sectional area AA is YY. If the length of the wire is doubled and cross-sectional area is halved then Young's modules will be :

Options:

A)

4 Y

B)

2 Y

C)

Y4\mathrm{\frac{Y}{4}}

D)

Y

Question 80

The gravitational potential at a point above the surface of earth is 5.12×107 J/kg-5.12 \times 10^7 \mathrm{~J} / \mathrm{kg} and the acceleration due to gravity at that point is 6.4 m/s26.4 \mathrm{~m} / \mathrm{s}^2. Assume that the mean radius of earth to be 6400 km6400 \mathrm{~km}. The height of this point above the earth's surface is :

Options:

A)

1600 km

B)

1200 km

C)

540 km

D)

1000 km

Numerical TypeQuestion 81

The horizontal component of earth's magnetic field at a place is 3.5×105 T3.5 \times 10^{-5} \mathrm{~T}. A very long straight conductor carrying current of 2 A\sqrt{2} \mathrm{~A} in the direction from South east to North West is placed. The force per unit length experienced by the conductor is __________ ×106 N/m\times 10^{-6} \mathrm{~N} / \mathrm{m}.

Numerical TypeQuestion 82

Two cells are connected in opposition as shown. Cell E1\mathrm{E}_1 is of 8 V8 \mathrm{~V} emf and 2Ω2 \Omega internal resistance; the cell E2\mathrm{E}_2 is of 2 V2 \mathrm{~V} emf and 4Ω4 \Omega internal resistance. The terminal potential difference of cell E2\mathrm{E}_2 is __________ V.

JEE Main 2024 (Online) 30th January Morning Shift Physics - Current Electricity Question 2 English

Numerical TypeQuestion 83

A electron of hydrogen atom on an excited state is having energy En=0.85 eV\mathrm{E}_{\mathrm{n}}=-0.85 \mathrm{~eV}. The maximum number of allowed transitions to lower energy level is _________.

Numerical TypeQuestion 84

A capacitor of capacitance C\mathrm{C} and potential V\mathrm{V} has energy E\mathrm{E}. It is connected to another capacitor of capacitance 2C2 \mathrm{C} and potential 2 V2 \mathrm{~V}. Then the loss of energy is x3E\frac{x}{3} \mathrm{E}, where xx is _______.

Numerical TypeQuestion 85

The distance between object and its two times magnified real image as produced by a convex lens is 45 cm45 \mathrm{~cm}. The focal length of the lens used is _______ cm.

Numerical TypeQuestion 86

In a closed organ pipe, the frequency of fundamental note is 30 Hz30 \mathrm{~Hz}. A certain amount of water is now poured in the organ pipe so that the fundamental frequency is increased to 110 Hz110 \mathrm{~Hz}. If the organ pipe has a cross-sectional area of 2 cm22 \mathrm{~cm}^2, the amount of water poured in the organ tube is __________ g. (Take speed of sound in air is 330 m/s330 \mathrm{~m} / \mathrm{s})

Numerical TypeQuestion 87

JEE Main 2024 (Online) 30th January Morning Shift Physics - Rotational Motion Question 1 English

Consider a Disc of mass 5 kg5 \mathrm{~kg}, radius 2 m2 \mathrm{~m}, rotating with angular velocity of 10 rad/s10 \mathrm{~rad} / \mathrm{s} about an axis perpendicular to the plane of rotation. An identical disc is kept gently over the rotating disc along the same axis. The energy dissipated so that both the discs continue to rotate together without slipping is ________ J.

Numerical TypeQuestion 88

The displacement and the increase in the velocity of a moving particle in the time interval of tt to (t+1)s(t+1) \mathrm{s} are 125 m125 \mathrm{~m} and 50 m/s50 \mathrm{~m} / \mathrm{s}, respectively. The distance travelled by the particle in (t+2)ths(\mathrm{t}+2)^{\mathrm{th}} \mathrm{s} is _________ m.

Numerical TypeQuestion 89

Each of three blocks P,Q\mathrm{P}, \mathrm{Q} and R\mathrm{R} shown in figure has a mass of 3 kg3 \mathrm{~kg}. Each of the wires A\mathrm{A} and B\mathrm{B} has cross-sectional area 0.005 cm20.005 \mathrm{~cm}^2 and Young's modulus 2×1011 N m22 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}. Neglecting friction, the longitudinal strain on wire BB is ________ ×104\times 10^{-4}. (Take g=10 m/s2\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2)

JEE Main 2024 (Online) 30th January Morning Shift Physics - Properties of Matter Question 2 English

Numerical TypeQuestion 90

A ceiling fan having 3 blades of length 80 cm80 \mathrm{~cm} each is rotating with an angular velocity of 1200 rpm\mathrm{rpm}. The magnetic field of earth in that region is 0.5G0.5 \mathrm{G} and angle of dip is 3030^{\circ}. The emf induced across the blades is Nπ×105 V\mathrm{N} \pi \times 10^{-5} \mathrm{~V}. The value of N\mathrm{N} is _________.