Jeehub Logo

Jan 29, 2024

JEE Mains

Shift: 2

Total Questions Available: 90

Question 1

Which of the following statements are correct about Zn,Cd\mathrm{Zn}, \mathrm{Cd} and Hg\mathrm{Hg} ?

A. They exhibit high enthalpy of atomization as the d-subshell is full.

B. Zn\mathrm{Zn} and Cd\mathrm{Cd} do not show variable oxidation state while Hg\mathrm{Hg} shows +I+\mathrm{I} and +II+\mathrm{II}.

C. Compounds of Zn,Cd\mathrm{Zn}, \mathrm{Cd} and Hg\mathrm{Hg} are paramagnetic in nature.

D. Zn,Cd\mathrm{Zn}, \mathrm{Cd} and Hg\mathrm{Hg} are called soft metals.

Choose the most appropriate from the options given below:

Options:

A)

C, D only

B)

B, C only

C)

A, D only

D)

B, D only

Question 2

A reagent which gives brilliant red precipitate with Nickel ions in basic medium is

Options:

A)

dimethyl glyoxime

B)

sodium nitroprusside

C)

meta-dinitrobenzene

D)

neutral FeCl3\mathrm{FeCl}_3

Question 3

Phenol treated with chloroform in presence of sodium hydroxide, which further hydrolyzed in presence of an acid results

Options:

A)

Salicylic acid

B)

Benzene-1,2-diol

C)

2-Hydroxybenzaldehyde

D)

Benzene-1,3-diol

Numerical TypeQuestion 4

The total number of molecules with zero dipole moment among CH4,BF3,H2O,HF,NH3,CO2\mathrm{CH}_4, \mathrm{BF}_3, \mathrm{H}_2 \mathrm{O}, \mathrm{HF}, \mathrm{NH}_3, \mathrm{CO}_2 and SO2\mathrm{SO}_2 is ________.

Numerical TypeQuestion 5

The following concentrations were observed at 500 K500 \mathrm{~K} for the formation of NH3\mathrm{NH}_3 from N2\mathrm{N}_2 and H2\mathrm{H}_2. At equilibrium ; [N2]=2×102M,[H2]=3×102M\left[\mathrm{N}_2\right]=2 \times 10^{-2} \mathrm{M},\left[\mathrm{H}_2\right]=3 \times 10^{-2} \mathrm{M} and [NH3]=1.5×102M\left[\mathrm{NH}_3\right]=1.5 \times 10^{-2} \mathrm{M}. Equilibrium constant for the reaction is ________.

Numerical TypeQuestion 6

The total number of anti bonding molecular orbitals, formed from 2s2 s and 2p2 p atomic orbitals in a diatomic molecule is _______.

Question 7

If sin32x+cos32xsin3xcos3xsin(xθ)dx=Acosθtanxsinθ+Bcosθsinθcotx+C\int \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sqrt{\sin ^3 x \cos ^3 x \sin (x-\theta)}} d x=A \sqrt{\cos \theta \tan x-\sin \theta}+B \sqrt{\cos \theta-\sin \theta \cot x}+C, where CC is the integration constant, then ABA B is equal to

Options:

A)

2secθ2 \sec \theta

B)

8cosec(2θ)8 \operatorname{cosec}(2 \theta)

C)

4cosec(2θ)4 \operatorname{cosec}(2 \theta)

D)

4secθ4 \sec \theta

Question 8

Let a unit vector u^=xi^+yj^+zk^\hat{u}=x \hat{i}+y \hat{j}+z \hat{k} make angles π2,π3\frac{\pi}{2}, \frac{\pi}{3} and 2π3\frac{2 \pi}{3} with the vectors 12i^+12k^,12j^+12k^\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{k}, \frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k} and 12i^+12j^\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j} respectively. If v=12i^+12j^+12k^\vec{v}=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k} then u^v2|\hat{u}-\vec{v}|^2 is equal to

Options:

A)

112\frac{11}{2}

B)

52\frac{5}{2}

C)

7

D)

9

Question 9

An integer is chosen at random from the integers 1,2,3,,501,2,3, \ldots, 50. The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is

Options:

A)

825\frac{8}{25}

B)

950\frac{9}{50}

C)

1425\frac{14}{25}

D)

2150\frac{21}{50}

Question 10

Let r\mathrm{r} and θ\theta respectively be the modulus and amplitude of the complex number z=2i(2tan5π8)z=2-i\left(2 \tan \frac{5 \pi}{8}\right), then (r,θ)(\mathrm{r}, \theta) is equal to

Options:

A)

(2sec11π8,11π8)\left(2 \sec \frac{11 \pi}{8}, \frac{11 \pi}{8}\right)

B)

(2sec3π8,3π8)\left(2 \sec \frac{3 \pi}{8}, \frac{3 \pi}{8}\right)

C)

(2sec5π8,3π8)\left(2 \sec \frac{5 \pi}{8}, \frac{3 \pi}{8}\right)

D)

(2sec3π8,5π8)\left(2 \sec \frac{3 \pi}{8}, \frac{5 \pi}{8}\right)

Numerical TypeQuestion 11

Let O be the origin, and M and N\mathrm{N} be the points on the lines x54=y41=z53\frac{x-5}{4}=\frac{y-4}{1}=\frac{z-5}{3} and x+812=y+25=z+119\frac{x+8}{12}=\frac{y+2}{5}=\frac{z+11}{9} respectively such that MN\mathrm{MN} is the shortest distance between the given lines. Then OMON\overrightarrow{O M} \cdot \overrightarrow{O N} is equal to _________.

Numerical TypeQuestion 12

Let α,β\alpha, \beta be the roots of the equation x26x+3=0x^2-\sqrt{6} x+3=0 such that Im(α)>Im(β)\operatorname{Im}(\alpha)>\operatorname{Im}(\beta). Let a,ba, b be integers not divisible by 3 and nn be a natural number such that α99β+α98=3n(a+ib),i=1\frac{\alpha^{99}}{\beta}+\alpha^{98}=3^n(a+i b), i=\sqrt{-1}. Then n+a+bn+a+b is equal to __________.

Question 13

A stone of mass 900 g900 \mathrm{~g} is tied to a string and moved in a vertical circle of radius 1 m1 \mathrm{~m} making 10 rpm10 \mathrm{~rpm}. The tension in the string, when the stone is at the lowest point is (if π2=9.8\pi^2=9.8 and g=9.8 m/s2g=9.8 \mathrm{~m} / \mathrm{s}^2) :

Options:

A)

17.8 N

B)

97 N

C)

9.8 N

D)

8.82 N

Question 14

A bob of mass 'mm' is suspended by a light string of length 'LL'. It is imparted a minimum horizontal velocity at the lowest point AA such that it just completes half circle reaching the top most position B. The ratio of kinetic energies (K.E)A(K.E)B\frac{(K . E)_A}{(K . E)_B} is :

JEE Main 2024 (Online) 29th January Evening Shift Physics - Work Power & Energy Question 3 English

Options:

A)

5 : 1

B)

3 : 2

C)

1 : 5

D)

2 : 5

Question 15

An electric field is given by (6i^+5j^+3k^)N/C(6 \hat{i}+5 \hat{j}+3 \hat{k}) \mathrm{N} / \mathrm{C}. The electric flux through a surface area 30i^ m230 \hat{i} \mathrm{~m}^2 lying in YZ-plane (in SI unit) is :

Options:

A)

60

B)

90

C)

180

D)

150

Question 16

In an a.c. circuit, voltage and current are given by:

V=100sin(100t)VV=100 \sin (100 t) V and I=100sin(100t+π3)mAI=100 \sin \left(100 t+\frac{\pi}{3}\right) \mathrm{mA} respectively.

The average power dissipated in one cycle is:

Options:

A)

5 W

B)

25 W

C)

2.5 W

D)

10 W

Question 17

NN moles of a polyatomic gas (f=6)(f=6) must be mixed with two moles of a monoatomic gas so that the mixture behaves as a diatomic gas. The value of NN is :

Options:

A)

6

B)

2

C)

4

D)

3

Question 18

In Young's double slit experiment, light from two identical sources are superimposing on a screen. The path difference between the two lights reaching at a point on the screen is 7λ/47 \lambda / 4. The ratio of intensity of fringe at this point with respect to the maximum intensity of the fringe is :

Options:

A)

12\frac{1}{2}

B)

34\frac{3}{4}

C)

13\frac{1}{3}

D)

14\frac{1}{4}

Question 19

Two sources of light emit with a power of 200 W200 \mathrm{~W}. The ratio of number of photons of visible light emitted by each source having wavelengths 300 nm300 \mathrm{~nm} and 500 nm500 \mathrm{~nm} respectively, will be :

Options:

A)

5:35: 3

B)

3:53: 5

C)

1:51: 5

D)

1:31: 3

Numerical TypeQuestion 20

A body of mass 5 kg5 \mathrm{~kg} moving with a uniform speed 32 ms13 \sqrt{2} \mathrm{~ms}^{-1} in XYX-Y plane along the line y=x+4y=x+4. The angular momentum of the particle about the origin will be _________ kg m2 s1\mathrm{kg} \mathrm{~m}^2 \mathrm{~s}^{-1}.

Numerical TypeQuestion 21

Hydrogen atom is bombarded with electrons accelerated through a potential difference of V\mathrm{V}, which causes excitation of hydrogen atoms. If the experiment is being performed at T=0 K\mathrm{T}=0 \mathrm{~K}, the minimum potential difference needed to observe any Balmer series lines in the emission spectra will be α10 V\frac{\alpha}{10} \mathrm{~V}, where α=\alpha= __________.

Numerical TypeQuestion 22

A charge of 4.0μC4.0 \mu \mathrm{C} is moving with a velocity of 4.0×106 ms14.0 \times 10^6 \mathrm{~ms}^{-1} along the positive yy axis under a magnetic field B\vec{B} of strength (2k^)T(2 \hat{k}) \mathrm{T}. The force acting on the charge is xi^Nx \hat{i} N. The value of xx is __________.

Question 23

On passing a gas, 'X\mathrm{X}', through Nessler's regent, a brown precipitate is obtained. The gas 'X\mathrm{X}' is

Options:

A)

Cl2\mathrm{Cl}_2

B)

CO2\mathrm{CO}_2

C)

NH3\mathrm{NH}_3

D)

H2S\mathrm{H}_2 \mathrm{S}

Question 24

Given below are two statements:

Statement I : Fluorine has most negative electron gain enthalpy in its group.

Statement II : Oxygen has least negative electron gain enthalpy in its group.

In the light of the above statements, choose the most appropriate from the options given below

Options:

A)

Both Statement I and Statement II are true

B)

Both Statement I and Statement II are false

C)

Statement I is false but Statement II is true

D)

Statement I is true but Statement II is false

Question 25

According to IUPAC system, the compound

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Basics of Organic Chemistry Question 6 English

is named as

Options:

A)

Cyclohex-2-en-1-ol

B)

1-Hydroxyhex-2-ene

C)

Cyclohex-1-en-3-ol

D)

Cyclohex-1-en-2-ol

Question 26

Match List I with List II

List - I
(Spectral Series for Hydrogen)
List - II
(Spectral Region/Higher Energy State)
(A) Lyman (I) Infrared region
(B) Balmer (II) UV region
(C) Paschen (III) Infrared region
(D) Pfund (IV) Visible region

Choose the correct answer from the options given below:

Options:

A)

A-II, B-IV, C-III, D-I

B)

A-I, B-III, C-II, D-IV

C)

A-II, B-III, C-I, D-IV

D)

A-I, B-II, C-III, D-IV

Question 27

The element having the highest first ionization enthalpy is

Options:

A)

C\mathrm{C}

B)

Al\mathrm{Al}

C)

Si\mathrm{Si}

D)

N\mathrm{N}

Question 28

The correct IUPAC name of K2MnO4\mathrm{K}_2 \mathrm{MnO}_4 is

Options:

A)

Potassium tetraoxidomanganate (VI)

B)

Dipotassium tetraoxidomanganate (VII)

C)

Potassium tetraoxopermanganate (VI)

D)

Potassium tetraoxidomanganese (VI)

Question 29

Which of the following reaction is correct?

Options:

A)

C2H5CONH2+Br2+NaOHC2H5CH2NH2+Na2CO3+NaBr+H2O\mathrm{C}_2 \mathrm{H}_5 \mathrm{CONH}_2+\mathrm{Br}_2+\mathrm{NaOH} \rightarrow \mathrm{C}_2 \mathrm{H}_5 \mathrm{CH}_2 \mathrm{NH}_2+\mathrm{Na}_2 \mathrm{CO}_3+\mathrm{NaBr}+\mathrm{H}_2 \mathrm{O}

B)

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Compounds Containing Nitrogen Question 4 English Option 2

C)

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Compounds Containing Nitrogen Question 4 English Option 3

D)

CH3CH2CH2NH2H2OHNO2,0CCH3CH2OH+N2+HCl\mathrm{CH}_3 \mathrm{CH}_2 \mathrm{CH}_2 \mathrm{NH}_2 \xrightarrow[\mathrm{H}_2 \mathrm{O}]{\mathrm{HNO}_2, 0^{\circ} \mathrm{C}} \mathrm{CH}_3 \mathrm{CH}_2 \mathrm{OH}+\mathrm{N}_2+\mathrm{HCl}

Numerical TypeQuestion 30

The half-life of radioisotope bromine - 82 is 36 hours. The fraction which remains after one day is ________ ×102\times 10^{-2}.

(Given antilog 0.2006=1.5870.2006=1.587)

Numerical TypeQuestion 31

The oxidation number of iron in the compound formed during brown ring test for NO3_3^- iron is ________.

Question 32

The distance of the point (2,3)(2,3) from the line 2x3y+28=02 x-3 y+28=0, measured parallel to the line 3xy+1=0\sqrt{3} x-y+1=0, is equal to

Options:

A)

3+423+4 \sqrt{2}

B)

636 \sqrt{3}

C)

4+634+6 \sqrt{3}

D)

424 \sqrt{2}

Question 33

The function f(x)=xx26x16,xR{2,8}f(x)=\frac{x}{x^2-6 x-16}, x \in \mathbb{R}-\{-2,8\}

Options:

A)

decreases in (,2)(2,8)(8,)(-\infty,-2) \cup(-2,8) \cup(8, \infty)

B)

increases in (,2)(2,8)(8,)(-\infty,-2) \cup(-2,8) \cup(8, \infty)

C)

decreases in (2,8)(-2,8) and increases in (,2)(8,)(-\infty,-2) \cup(8, \infty)

D)

decreases in (,2)(-\infty,-2) and increases in (8,)(8, \infty)

Question 34

If the mean and variance of five observations are 245\frac{24}{5} and 19425\frac{194}{25} respectively and the mean of the first four observations is 72\frac{7}{2}, then the variance of the first four observations in equal to

Options:

A)

54\frac{5}{4}

B)

45\frac{4}{5}

C)

1054\frac{105}{4}

D)

7712\frac{77}{12}

Question 35

If logea,loge b,logec\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c} are in an A.P. and logealoge2 b,loge2 bloge3c,loge3cloge\log _e \mathrm{a}-\log _e 2 \mathrm{~b}, \log _e 2 \mathrm{~b}-\log _e 3 \mathrm{c}, \log _e 3 \mathrm{c} -\log _e a are also in an A.P, then a:b:ca: b: c is equal to

Options:

A)

6:3:26: 3: 2

B)

9:6:49: 6: 4

C)

25:10:425: 10: 4

D)

16:4:116: 4: 1

Question 36

The function f(x)=2x+3(x)23,xRf(x)=2 x+3(x)^{\frac{2}{3}}, x \in \mathbb{R}, has

Options:

A)

exactly one point of local minima and no point of local maxima

B)

exactly one point of local maxima and exactly one point of local minima

C)

exactly two points of local maxima and exactly one point of local minima

D)

exactly one point of local maxima and no point of local minima

Question 37

If each term of a geometric progression a1,a2,a3,a_1, a_2, a_3, \ldots with a1=18a_1=\frac{1}{8} and a2a1a_2 \neq a_1, is the arithmetic mean of the next two terms and Sn=a1+a2+..+anS_n=a_1+a_2+\ldots . .+a_n, then S20S18S_{20}-S_{18} is equal to

Options:

A)

215-2^{15}

B)

2152^{15}

C)

218-2^{18}

D)

2182^{18}

Numerical TypeQuestion 38

Let the area of the region {(x,y):0x3,0ymin{x2+2,2x+2}}\left\{(x, y): 0 \leq x \leq 3,0 \leq y \leq \min \left\{x^2+2,2 x+2\right\}\right\} be A. Then 12 A12 \mathrm{~A} is equal to __________.

Numerical TypeQuestion 39

Let the slope of the line 45x+5y+3=045 x+5 y+3=0 be 27r1+9r2227 r_1+\frac{9 r_2}{2} for some r1,r2Rr_1, r_2 \in \mathbb{R}. Then \lim _\limits{x \rightarrow 3}\left(\int_3^x \frac{8 t^2}{\frac{3 r_2 x}{2}-r_2 x^2-r_1 x^3-3 x} d t\right) is equal to _________.

Numerical TypeQuestion 40

Let P(α,β)P(\alpha, \beta) be a point on the parabola y2=4xy^2=4 x. If PP also lies on the chord of the parabola x2=8yx^2=8 y whose mid point is (1,54)\left(1, \frac{5}{4}\right), then (α28)(β8)(\alpha-28)(\beta-8) is equal to _________.

Numerical TypeQuestion 41

If \int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}, where α,β\alpha, \beta and γ\gamma are rational numbers, then 3α+4βγ3 \alpha+4 \beta-\gamma is equal to _________.

Question 42

In the given circuit, the current in resistance R3_3 is :

JEE Main 2024 (Online) 29th January Evening Shift Physics - Current Electricity Question 7 English

Options:

A)

2 A

B)

1.5 A

C)

1 A

D)

2.5 A

Question 43

The temperature of a gas having 2.0×10252.0 \times 10^{25} molecules per cubic meter at 1.38 atm1.38 \mathrm{~atm} (Given, k=1.38×1023JK1\mathrm{k}=1.38 \times 10^{-23} \mathrm{JK}^{-1}) is :

Options:

A)

500 K

B)

300 K

C)

200 K

D)

100 K

Question 44

If the distance between object and its two times magnified virtual image produced by a curved mirror is 15 cm15 \mathrm{~cm}, the focal length of the mirror must be:

Options:

A)

10-10 cm

B)

12-12 cm

C)

15 cm

D)

10/3 cm

Question 45

Two particles XX and YY having equal charges are being accelerated through the sat potential difference. Thereafter they enter normally in a region of uniform magnetic field and describes circular paths of radii R1R_1 and R2R_2 respectively. The mass ratio of XX and YY is :

Options:

A)

(R1R2)\left(\frac{R_1}{R_2}\right)

B)

(R2R1)\left(\frac{R_2}{R_1}\right)

C)

(R2R1)2\left(\frac{R_2}{R_1}\right)^2

D)

(R1R2)2\left(\frac{R_1}{R_2}\right)^2

Numerical TypeQuestion 46

A horizontal straight wire 5 m5 \mathrm{~m} long extending from east to west falling freely at right angle to horizontal component of earths magnetic field 0.60×104 Wbm20.60 \times 10^{-4} \mathrm{~Wbm}^{-2}. The instantaneous value of emf induced in the wire when its velocity is 10 ms110 \mathrm{~ms}^{-1} is _________ ×103 V\times 10^{-3} \mathrm{~V}.

Question 47

Match List I with List II

List - I
(Bio Polymer)
List - II
(Monomer)
(A) Starch (I) nucleotide
(B) Cellulose (II) α\alpha-glucose
(C) Nucleic acid (III) β\beta-glucose
(D) Protein (IV) α\alpha-amino acid

Choose the correct answer from the options given below:

Options:

A)

A-IV, B-II, C-I, D-III

B)

A-I, B-III, C-IV, D-II

C)

A-II, B-I, C-III, D-IV

D)

A-II, B-III, C-I, D-IV

Question 48

The ascending acidity order of the following H atoms is

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Basics of Organic Chemistry Question 7 English

Options:

A)

A < B < D < C

B)

A < B < C < D

C)

D < C < B < A

D)

C < D < B < A

Question 49

Identify the reagents used for the following conversion

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 6 English

Options:

A)

A=LiAlH4, B=NaOH(aq),C=NH2NH2/KOH, ethylene glycol \mathrm{A}=\mathrm{LiAlH}_4, \mathrm{~B}=\mathrm{NaOH}_{(\mathrm{aq})}, \mathrm{C}=\mathrm{NH}_2-\mathrm{NH}_2 / \mathrm{KOH} \text {, ethylene glycol }

B)

A=DIBALH,B=NaOH(aq),C=NH2NH2/KOH, ethylene glycol \mathrm{A}=\mathrm{DIBAL}-\mathrm{H}, \mathrm{B}=\mathrm{NaOH}_{(\mathrm{aq})}, \mathrm{C}=\mathrm{NH}_2-\mathrm{NH}_2 / \mathrm{KOH} \text {, ethylene glycol }

C)

A=LiAlH4, B=NaOH(alc),C=Zn/HCl\mathrm{A}=\mathrm{LiAlH}_4, \mathrm{~B}=\mathrm{NaOH}_{(\mathrm{alc})}, \mathrm{C}=\mathrm{Zn} / \mathrm{HCl}

D)

A=DIBALH,B=NaOH(alc),C=Zn/HCl\mathrm{A}=\mathrm{DIBAL}-\mathrm{H}, \mathrm{B}=\mathrm{NaOH}_{(\mathrm{alc})}, \mathrm{C}=\mathrm{Zn} / \mathrm{HCl}

Question 50

Which one of the following will show geometrical isomerism?

Options:

A)

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Basics of Organic Chemistry Question 5 English Option 1

B)

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Basics of Organic Chemistry Question 5 English Option 2

C)

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Basics of Organic Chemistry Question 5 English Option 3

D)

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Basics of Organic Chemistry Question 5 English Option 4

Numerical TypeQuestion 51

Standard enthalpy of vapourisation for CCl4\mathrm{CCl}_4 is 30.5 kJ mol130.5 \mathrm{~kJ} \mathrm{~mol}^{-1}. Heat required for vapourisation of 284 g284 \mathrm{~g} of CCl4\mathrm{CCl}_4 at constant temperature is ________ kJ\mathrm{kJ}.

(Given molar mass in gmol1;C=12,Cl=35.5\mathrm{g} \mathrm{mol}^{-1} ; \mathrm{C}=12, \mathrm{Cl}=35.5)

Numerical TypeQuestion 52

If 50 mL50 \mathrm{~mL} of 0.5M0.5 \mathrm{M} oxalic acid is required to neutralise 25 mL25 \mathrm{~mL} of NaOH\mathrm{NaOH} solution, the amount of NaOH\mathrm{NaOH} in 50 mL50 \mathrm{~mL} of given NaOH\mathrm{NaOH} solution is ______ g.

Numerical TypeQuestion 53

A constant current was passed through a solution of AuCl4\mathrm{AuCl}_4^{-} ion between gold electrodes. After a period of 10.0 minutes, the increase in mass of cathode was 1.314 g1.314 \mathrm{~g}. The total charge passed through the solution is _______ ×102 F\times 10^{-2} \mathrm{~F}.

(Given atomic mass of Au=197\mathrm{Au}=197)

Numerical TypeQuestion 54

The total number of 'Sigma' and 'Pi' bonds in 2-formylhex-4-enoic acid is _________.

Question 55

If sin(yx)=logex+α2\sin \left(\frac{y}{x}\right)=\log _e|x|+\frac{\alpha}{2} is the solution of the differential equation xcos(yx)dydx=ycos(yx)+xx \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x and y(1)=π3y(1)=\frac{\pi}{3}, then α2\alpha^2 is equal to

Options:

A)

12

B)

9

C)

4

D)

3

Question 56

Let OA=a,OB=12a+4b and OC=b\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=12 \vec{a}+4 \vec{b} \text { and } \overrightarrow{O C}=\vec{b}, where O is the origin. If S is the parallelogram with adjacent sides OA and OC, then areaofthequadrilateralOABCareaofS\mathrm{{{area\,of\,the\,quadrilateral\,OA\,BC} \over {area\,of\,S}}} is equal to _________.

Options:

A)

7

B)

6

C)

8

D)

10

Question 57

The sum of the solutions xRx \in \mathbb{R} of the equation 3cos2x+cos32xcos6xsin6x=x3x2+6\frac{3 \cos 2 x+\cos ^3 2 x}{\cos ^6 x-\sin ^6 x}=x^3-x^2+6 is

Options:

A)

3

B)

1

C)

0

D)

-1

Numerical TypeQuestion 58

Let the set C={(x,y)x22y=2023,x,yN}C=\left\{(x, y) \mid x^2-2^y=2023, x, y \in \mathbb{N}\right\}. Then \sum_\limits{(x, y) \in C}(x+y) is equal to _________.

Question 59

A particle is moving in a straight line. The variation of position 'xx' as a function of time 'tt' is given as x=(t36t2+20t+15)mx=\left(t^3-6 t^2+20 t+15\right) m. The velocity of the body when its acceleration becomes zero is :

Options:

A)

6 m/s

B)

10 m/s

C)

8 m/s

D)

4 m/s

Question 60

The bob of a pendulum was released from a horizontal position. The length of the pendulum is 10 m10 \mathrm{~m}. If it dissipates 10%10 \% of its initial energy against air resistance, the speed with which the bob arrives at the lowest point is:

[Use, g:10 ms2\mathrm{g}: 10 \mathrm{~ms}^{-2}]

Options:

A)

56 ms15 \sqrt{6} \mathrm{~ms}^{-1}

B)

55 ms15 \sqrt{5} \mathrm{~ms}^{-1}

C)

25 ms12 \sqrt{5} \mathrm{~ms}^{-1}

D)

65 ms16 \sqrt{5} \mathrm{~ms}^{-1}

Numerical TypeQuestion 61

A simple harmonic oscillator has an amplitude AA and time period 6π6 \pi second. Assuming the oscillation starts from its mean position, the time required by it to travel from x=x= A to x=32x=\frac{\sqrt{3}}{2} A will be πx s\frac{\pi}{x} \mathrm{~s}, where x=x= _________.

Numerical TypeQuestion 62

A particle is moving in a circle of radius 50 cm50 \mathrm{~cm} in such a way that at any instant the normal and tangential components of it's acceleration are equal. If its speed at t=0\mathrm{t}=0 is 4 m/s4 \mathrm{~m} / \mathrm{s}, the time taken to complete the first revolution will be 1α[1e2π]s\frac{1}{\alpha}\left[1-e^{-2 \pi}\right] \mathrm{s}, where α=\alpha= _________.

Question 63

Which of the following acts as a strong reducing agent? (Atomic number: Ce=58,Eu=63,Gd=64,Lu=71\mathrm{Ce}=58, \mathrm{Eu}=63, \mathrm{Gd}=64, \mathrm{Lu}=71)

Options:

A)

Eu2+\mathrm{Eu}^{2+}

B)

Gd3+\mathrm{Gd}^{3+}

C)

Lu3+\mathrm{Lu}^{3+}

D)

Ce4+\mathrm{Ce}^{4+}

Question 64

Chromatographic technique/s based on the principle of differential adsorption is / are

A. Column chromatography

B. Thin layer chromatography

C. Paper chromatography

Choose the most appropriate answer from the options given below:

Options:

A)

B only

B)

A only

C)

A & B only

D)

C only

Question 65

Anomalous behavior of oxygen is due to its

Options:

A)

large size and low electronegativity

B)

small size and high electronegativity

C)

small size and low electronegativity

D)

large size and high electronegativity

Question 66

Match List I with List II

List - I
(Compound)
List - II
(pKa\mathrm{pK_a} value)
(A) Ethanol (I) 10.0
(B) Phenol (II) 15.9
(C) m-Nitrophenol (III) 7.1
(D) p-Nitrophenol (IV) 8.3

Choose the correct answer from the options given below:

Options:

A)

A-I, B-II, C-III, D-IV

B)

A-IV, B-I, C-II, D-III

C)

A-II, B-I, C-IV, D-III

D)

A-III, B-IV, C-I, D-II

Question 67

The product A formed in the following reaction is

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Compounds Containing Nitrogen Question 3 English

Options:

A)

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Compounds Containing Nitrogen Question 3 English Option 1

B)

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Compounds Containing Nitrogen Question 3 English Option 2

C)

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Compounds Containing Nitrogen Question 3 English Option 3

D)

JEE Main 2024 (Online) 29th January Evening Shift Chemistry - Compounds Containing Nitrogen Question 3 English Option 4

Question 68

Alkyl halide is converted into alkyl isocyanide by reaction with

Options:

A)

KCN\mathrm{KCN}

B)

NH4CN\mathrm{NH}_4 \mathrm{CN}

C)

NaCN\mathrm{NaCN}

D)

AgCN\mathrm{AgCN}

Numerical TypeQuestion 69

Molality of 0.8 M H2_2SO4_4 solution (density 1.06 g cm3^{-3}) is ________ ×103\times10^{-3} m.

Question 70

Number of ways of arranging 8 identical books into 4 identical shelves where any number of shelves may remain empty is equal to

Options:

A)

18

B)

16

C)

12

D)

15

Question 71

Let A\mathrm{A} be the point of intersection of the lines 3x+2y=14,5xy=63 x+2 y=14,5 x-y=6 and B\mathrm{B} be the point of intersection of the lines 4x+3y=8,6x+y=54 x+3 y=8,6 x+y=5. The distance of the point P(5,2)P(5,-2) from the line AB\mathrm{AB} is

Options:

A)

132\frac{13}{2}

B)

8

C)

52\frac{5}{2}

D)

6

Question 72

If R is the smallest equivalence relation on the set {1,2,3,4}\{1,2,3,4\} such that {(1,2),(1,3)}R\{(1,2),(1,3)\} \subset \mathrm{R}, then the number of elements in R\mathrm{R} is __________.

Options:

A)

15

B)

10

C)

12

D)

8

Question 73

Let P(3,2,3),Q(4,6,2)\mathrm{P}(3,2,3), \mathrm{Q}(4,6,2) and R(7,3,2)\mathrm{R}(7,3,2) be the vertices of PQR\triangle \mathrm{PQR}. Then, the angle QPR\angle \mathrm{QPR} is

Options:

A)

cos1(718)\cos ^{-1}\left(\frac{7}{18}\right)

B)

π6\frac{\pi}{6}

C)

cos1(118)\cos ^{-1}\left(\frac{1}{18}\right)

D)

π3\frac{\pi}{3}

Question 74

 Let y=loge(1x21+x2),1<x<1. Then at x=12, the value of 225(yy) is equal to \text { Let } y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1 < x<1 \text {. Then at } x=\frac{1}{2} \text {, the value of } 225\left(y^{\prime}-y^{\prime \prime}\right) \text { is equal to }

Options:

A)

732

B)

736

C)

742

D)

746

Question 75

Let x=mnx=\frac{m}{n} (m,nm, n are co-prime natural numbers) be a solution of the equation cos(2sin1x)=19\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9} and let α,β(α>β)\alpha, \beta(\alpha >\beta) be the roots of the equation mx2nxm+n=0m x^2-n x-m+ n=0. Then the point (α,β)(\alpha, \beta) lies on the line

Options:

A)

3x2y=23 x-2 y=-2

B)

3x+2y=23 x+2 y=2

C)

5x+8y=95 x+8 y=9

D)

5x8y=95 x-8 y=-9

Question 76

Let A=[2126211332]A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right] and P=[120502715]P=\left[\begin{array}{lll}1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{array}\right]. The sum of the prime factors of P1AP2I\left|P^{-1} A P-2 I\right| is equal to

Options:

A)

66

B)

27

C)

23

D)

26

Numerical TypeQuestion 77

Let for any three distinct consecutive terms a,b,ca, b, c of an A.P, the lines ax+by+c=0a x+b y+c=0 be concurrent at the point PP and Q(α,β)Q(\alpha, \beta) be a point such that the system of equations

x+y+z=6,2x+5y+αz=β and \begin{aligned} & x+y+z=6, \\ & 2 x+5 y+\alpha z=\beta \text { and } \end{aligned}

x+2y+3z=4x+2 y+3 z=4, has infinitely many solutions. Then (PQ)2(P Q)^2 is equal to _________.

Numerical TypeQuestion 78

Remainder when 64323264^{32^{32}} is divided by 9 is equal to ________.

Numerical TypeQuestion 79

Let f(x)=\sqrt{\lim _\limits{r \rightarrow x}\left\{\frac{2 r^2\left[(f(r))^2-f(x) f(r)\right]}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}}\right\}} be differentiable in (,0)(0,)(-\infty, 0) \cup(0, \infty) and f(1)=1f(1)=1. Then the value of ea, such that f(a)=0f(a)=0, is equal to _________.

Question 80

A small liquid drop of radius RR is divided into 27 identical liquid drops. If the surface tension is TT, then the work done in the process will be:

Options:

A)

4πR2 T4 \pi \mathrm{R}^2 \mathrm{~T}

B)

8πR2 T8 \pi R^2 \mathrm{~T}

C)

18πR2T\frac{1}{8} \pi R^2 T

D)

3πR2 T3 \pi R^2 \mathrm{~T}

Question 81

A physical quantity QQ is found to depend on quantities a,b,ca, b, c by the relation Q=a4b3c2Q=\frac{a^4 b^3}{c^2}. The percentage error in a,ba, b and cc are 3%,4%3 \%, 4 \% and 5%5 \% respectively. Then, the percentage error in QQ is :

Options:

A)

43%

B)

34%

C)

66%

D)

14%

Question 82

The truth table for this given circuit is :

JEE Main 2024 (Online) 29th January Evening Shift Physics - Semiconductor Question 3 English

Options:

A)

JEE Main 2024 (Online) 29th January Evening Shift Physics - Semiconductor Question 3 English Option 1

B)

JEE Main 2024 (Online) 29th January Evening Shift Physics - Semiconductor Question 3 English Option 2

C)

JEE Main 2024 (Online) 29th January Evening Shift Physics - Semiconductor Question 3 English Option 3

D)

JEE Main 2024 (Online) 29th January Evening Shift Physics - Semiconductor Question 3 English Option 4

Question 83

A planet takes 200 days to complete one revolution around the Sun. If the distance of the planet from Sun is reduced to one fourth of the original distance, how many days will it take to complete one revolution :

Options:

A)

20

B)

50

C)

100

D)

25

Question 84

A wire of length LL and radius rr is clamped at one end. If its other end is pulled by a force FF, its length increases by ll. If the radius of the wire and the applied force both are reduced to half of their original values keeping original length constant, the increase in length will become:

Options:

A)

2 times

B)

4 times

C)

3 times

D)

32\frac{3}{2} times

Question 85

A plane electromagnetic wave of frequency 35 MHz35 \mathrm{~MHz} travels in free space along the XX-direction. At a particular point (in space and time) E=9.6j^ V/m\vec{E}=9.6 \hat{j} \mathrm{~V} / \mathrm{m}. The value of magnetic field at this point is :

Options:

A)

9.6j^T9.6 \hat{j} T

B)

3.2×108i^T3.2 \times 10^{-8} \hat{i} T

C)

9.6×108k^T9.6 \times 10^{-8} \hat{k} T

D)

3.2×108k^T3.2 \times 10^{-8} \hat{k} T

Question 86

Given below are two statements:

Statement I : Most of the mass of the atom and all its positive charge are concentrated in a tiny nucleus and the electrons revolve around it, is Rutherford's model.

Statement II : An atom is a spherical cloud of positive charges with electrons embedded in it, is a special case of Rutherford's model.

In the light of the above statements, choose the most appropriate from the options given below

Options:

A)

Both Statement I and Statement II are true

B)

Statement I is true but Statement II is false

C)

Statement I is false but Statement II is true

D)

Both statement I and statement II are false

Numerical TypeQuestion 87

In the given circuit, the current flowing through the resistance 20Ω20 \Omega is 0.3 A0.3 \mathrm{~A}, while the ammeter reads 0.9 A0.9 \mathrm{~A}. The value of R1\mathrm{R}_1 is _________ Ω\Omega.

JEE Main 2024 (Online) 29th January Evening Shift Physics - Current Electricity Question 4 English

Numerical TypeQuestion 88

In the given figure, the charge stored in 6μF6 \mu F capacitor, when points AA and BB are joined by a connecting wire is __________ μC\mu C.

JEE Main 2024 (Online) 29th January Evening Shift Physics - Capacitor Question 2 English

Numerical TypeQuestion 89

In a single slit diffraction pattern, a light of wavelength 6000Ao\mathop A\limits^o is used. The distance between the first and third minima in the diffraction pattern is found to be 3 mm3 \mathrm{~mm} when the screen in placed 50 cm50 \mathrm{~cm} away from slits. The width of the slit is _________ ×104 m\times 10^{-4} \mathrm{~m}.

Numerical TypeQuestion 90

Two metallic wires PP and QQ have same volume and are made up of same material. If their area of cross sections are in the ratio 4:14: 1 and force F1F_1 is applied to PP, an extension of Δl\Delta l is produced. The force which is required to produce same extension in QQ is F2\mathrm{F}_2.

The value of F1F2\frac{F_1}{F_2} is _________.