Jeehub Logo

Jan 27, 2024

JEE Mains

Shift: 1

Total Questions Available: 90

Question 1

Two nucleotides are joined together by a linkage known as :

Options:

A)

Phosphodiester linkage

B)

Glycosidic linkage

C)

Disulphide linkage

D)

Peptide linkage

Question 2

Highest enol content will be shown by:

Options:

A)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 13 English Option 1

B)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 13 English Option 2

C)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 13 English Option 3

D)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 13 English Option 4

Question 3

Element not showing variable oxidation state is :

Options:

A)

Bromine

B)

Iodine

C)

Chlorine

D)

Fluorine

Question 4

Which of the following is strongest Bronsted base?

Options:

A)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 21 English Option 1

B)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 21 English Option 2

C)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 21 English Option 3

D)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 21 English Option 4

Question 5

Which of the following electronic configuration would be associated with the highest magnetic moment?

Options:

A)

[Ar]3 d7[\mathrm{Ar}] 3 \mathrm{~d}^7

B)

[Ar]3 d8[\mathrm{Ar}] 3 \mathrm{~d}^8

C)

[Ar]3 d3[\mathrm{Ar}] 3 \mathrm{~d}^3

D)

[Ar]3 d6[\mathrm{Ar}] 3 \mathrm{~d}^6

Question 6

Which of the following has highly acidic hydrogen?

Options:

A)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 20 English Option 1

B)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 20 English Option 2

C)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 20 English Option 3

D)

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 20 English Option 4

Question 7

A solution of two miscible liquids showing negative deviation from Raoult's law will have :

Options:

A)

increased vapour pressure, increased boiling point

B)

increased vapour pressure, decreased boiling point

C)

decreased vapour pressure, decreased boiling point

D)

decreased vapour pressure, increased boiling point

Question 8

Consider the following complex ions

P=[FeF6]3Q=[V(H2O)6]2+R=[Fe(H2O)6]2+\begin{aligned} & \mathrm{P}=\left[\mathrm{FeF}_6\right]^{3-} \\ & \mathrm{Q}=\left[\mathrm{V}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+} \\ & \mathrm{R}=\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+} \end{aligned}

The correct order of the complex ions, according to their spin only magnetic moment values (in B.M.) is :

Options:

A)

R < Q < P

B)

R < P < Q

C)

Q < R < P

D)

Q < P < R

Question 9

Choose the polar molecule from the following:

Options:

A)

CCl4\mathrm{CCl}_4

B)

CO2\mathrm{CO}_2

C)

CH2=CH2\mathrm{CH}_2=\mathrm{CH}_2

D)

CHCl3\mathrm{CHCl}_3

Question 10

Given below are two statements :

Statement (I) : The 4f4 \mathrm{f} and 5f5 \mathrm{f} - series of elements are placed separately in the Periodic table to preserve the principle of classification.

Statement (II) : S-block elements can be found in pure form in nature.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Statement I is false but Statement II is true

B)

Both Statement I and Statement II are true

C)

Statement I is true but Statement II is false

D)

Both Statement I and Statement II are false

Question 11

Given below are two statements :

Statement (I) : p-nitrophenol is more acidic than m-nitrophenol and o-nitrophenol.

Statement (II) : Ethanol will give immediate turbidity with Lucas reagent.

In the light of the above statements, choose the correct answer from the options given below :

Options:

A)

Statement I is true but Statement II is false

B)

Both Statement I and Statement II are true

C)

Both Statement I and Statement II are false

D)

Statement I is false but Statement II is true

Question 12

The ascending order of acidity of OH-\mathrm{OH} group in the following compounds is :

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 9 English 1JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 9 English 2

Choose the correct answer from the options given below:

Options:

A)

(A) < (D) < (C) < (B) < (E)

B)

(C) < (A) < (D) < (B) < (E)

C)

(C) < (D) < (B) < (A) < (E)

D)

(A) < (C) < (D) < (B) < (E)

Question 13

Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Melting point of Boron (2453 K) is unusually high in group 13 elements.

Reason (R) : Solid Boron has very strong crystalline lattice.

In the light of the above statements, choose the most appropriate answer from the options given below ;

Options:

A)

Both (A) and (R) are correct but (R) Is not the correct explanation of (A)

B)

Both (A) and (R) are correct and (R) is the correct explanation of (A)

C)

(A) is true but (R) is false

D)

(A) is false but (R) is true

Question 14

Cyclohexene

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 26 English

is ________ type of an organic compound.

Options:

A)

Benzenoid aromatic

B)

Benzenoid non-aromatic

C)

Acyclic

D)

Alicyclic

Question 15

Yellow compound of lead chromate gets dissolved on treatment with hot NaOH\mathrm{NaOH} solution. The product of lead formed is a :

Options:

A)

Tetraanionic complex with coordination number six

B)

Neutral complex with coordination number four

C)

Dianionic complex with coordination number six

D)

Dianionic complex with coordination number four

Question 16

Given below are two statements :

Statement (I) : Aqueous solution of ammonium carbonate is basic.

Statement (II) : Acidic/basic nature of salt solution of a salt of weak acid and weak base depends on KaK_a and KbK_b value of acid and the base forming it.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Both Statement I and Statement II are correct

B)

Statement I is correct but Statement II is incorrect

C)

Both Statement I and Statement II are incorrect

D)

Statement I is incorrect but Statement II is correct

Question 17

IUPAC name of following compound (P) is:

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 25 English

Options:

A)

l-Ethyl-5, 5-dimethylcyclohexane

B)

3-Ethyl-1,1-dimethylcyclohexane

C)

l-Ethyl-3, 3-dimethylcyclohexane

D)

1,1-Dimethyl-3-ethylcyclohexane

Question 18

NaCl\mathrm{NaCl} reacts with conc. H2SO4\mathrm{H}_2 \mathrm{SO}_4 and K2Cr2O7\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7 to give reddish fumes (B), which react with NaOH\mathrm{NaOH} to give yellow solution (C). (B) and (C) respectively are ;

Options:

A)

CrO2Cl2,Na2CrO4\mathrm{CrO}_2 \mathrm{Cl}_2, \mathrm{Na}_2 \mathrm{CrO}_4

B)

Na2CrO4,CrO2Cl2\mathrm{Na}_2 \mathrm{CrO}_4, \mathrm{CrO}_2 \mathrm{Cl}_2

C)

CrO2Cl2,KHSO4\mathrm{CrO}_2 \mathrm{Cl}_2, \mathrm{KHSO}_4

D)

CrO2Cl2,Na2Cr2O7\mathrm{CrO}_2 \mathrm{Cl}_2, \mathrm{Na}_2 \mathrm{Cr}_2 \mathrm{O}_7

Question 19

The correct statement regarding nucleophilic substitution reaction in a chiral alkyl halide is ;

Options:

A)

Retention occurs in SN1S_N 1 reaction and inversion occurs in SN2\mathrm{S}_{\mathrm{N}} 2 reaction.

B)

Racemisation occurs in SN1\mathrm{S}_{\mathrm{N}} 1 reaction and retention occurs in SN2\mathrm{S}_{\mathrm{N}} 2 reaction.

C)

Racemisation occurs in both SN1\mathrm{S}_{\mathrm{N}} 1 and SN2\mathrm{S}_{\mathrm{N}} 2 reactions.

D)

Racemisation occurs in SN1S_N 1 reaction and inversion occurs in SN2\mathrm{S}_{\mathrm{N}} 2 reaction.

Question 20

The electronic configuration for Neodymium is:

[Atomic Number for Neodymium 60]

Options:

A)

[Xe]4f46 s2[\mathrm{Xe}] 4 \mathrm{f}^4 6 \mathrm{~s}^2

B)

[Xe]5f47 s2[\mathrm{Xe}] 5 \mathrm{f}^4 7 \mathrm{~s}^2

C)

[Xe]4f66 s2[\mathrm{Xe}] 4 \mathrm{f}^6 6 \mathrm{~s}^2

D)

[Xe]4f15 d16 s2[\mathrm{Xe}] 4 \mathrm{f}^1 5 \mathrm{~d}^1 6 \mathrm{~s}^2

Numerical TypeQuestion 21

The mass of silver (Molar mass of Ag:108 gmol1\mathrm{Ag}: 108 \mathrm{~gmol}^{-1} ) displaced by a quantity of electricity which displaces 5600 mL5600 \mathrm{~mL} of O2\mathrm{O}_2 at S.T.P. will be ______ g.

Numerical TypeQuestion 22

Consider the following data for the given reaction

2HI(g)H2( g)+I2( g)2 \mathrm{HI}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Chemical Kinetics and Nuclear Chemistry Question 8 English

The order of the reaction is _________.

Numerical TypeQuestion 23

Mass of methane required to produce 22 g22 \mathrm{~g} of CO2\mathrm{CO}_2 after complete combustion is _______ g.

(Given Molar mass in g mol-1 C=12.0\mathrm{C}=12.0, H=1.0\mathrm{H}=1.0, O=16.0)\mathrm{O}=16.0)

Numerical TypeQuestion 24

If three moles of an ideal gas at 300 K300 \mathrm{~K} expand isotherrnally from 30 dm330 \mathrm{~dm}^3 to 45 dm345 \mathrm{~dm}^3 against a constant opposing pressure of 80 kPa80 \mathrm{~kPa}, then the amount of heat transferred is _______ J.

Numerical TypeQuestion 25

3-Methylhex-2-ene on reaction with HBr\mathrm{HBr} in presence of peroxide forms an addition product (A). The number of possible stereoisomers for 'A\mathrm{A}' is ________.

Numerical TypeQuestion 26

Among the given organic compounds, the total number of aromatic compounds is

JEE Main 2024 (Online) 27th January Morning Shift Chemistry - Basics of Organic Chemistry Question 22 English

Numerical TypeQuestion 27

Among the following, total number of meta directing functional groups is (Integer based)

OCH3,NO2,CN,CH3NHCOCH3,COR,OH,COOH,Cl-\mathrm{OCH}_3,-\mathrm{NO}_2,-\mathrm{CN},-\mathrm{CH}_3-\mathrm{NHCOCH}_3, -\mathrm{COR},-\mathrm{OH},-\mathrm{COOH},-\mathrm{Cl}

Numerical TypeQuestion 28

The number of electrons present in all the completely filled subshells having n=4\mathrm{n}=4 and s=+12\mathrm{s}=+\frac{1}{2} is _______.

(Where n=\mathrm{n}= principal quantum number and s=\mathrm{s}= spin quantum number)

Numerical TypeQuestion 29

Sum of bond order of CO and NO+^+ is ________.

Numerical TypeQuestion 30

From the given list, the number of compounds with +4 oxidation state of Sulphur ________.

SO3,H2SO3,SOCl2,SF4,BaSO4,H2S2O7\mathrm{SO}_3, \mathrm{H}_2 \mathrm{SO}_3, \mathrm{SOCl}_2, \mathrm{SF}_4, \mathrm{BaSO}_4, \mathrm{H}_2 \mathrm{S}_2 \mathrm{O}_7

Question 31

If 0113+x+1+x dx=a+b2+c3\int\limits_0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} \mathrm{~d} x=\mathrm{a}+\mathrm{b} \sqrt{2}+\mathrm{c} \sqrt{3}, where a,b,c\mathrm{a}, \mathrm{b}, \mathrm{c} are rational numbers, then 2a+3 b4c2 \mathrm{a}+3 \mathrm{~b}-4 \mathrm{c} is equal to :

Options:

A)

10

B)

7

C)

4

D)

8

Question 32

If S={zC:zi=z+i=z1}S=\{z \in C:|z-i|=|z+i|=|z-1|\}, then, n(S)n(S) is :

Options:

A)

1

B)

2

C)

3

D)

0

Question 33

Let S={1,2,3,,10}S=\{1,2,3, \ldots, 10\}. Suppose MM is the set of all the subsets of SS, then the relation

R={(A,B):ABϕ;A,BM}\mathrm{R}=\{(\mathrm{A}, \mathrm{B}): \mathrm{A} \cap \mathrm{B} \neq \phi ; \mathrm{A}, \mathrm{B} \in \mathrm{M}\} is :

Options:

A)

symmetric only

B)

reflexive only

C)

symmetric and reflexive only

D)

symmetric and transitive only

Question 34

If the shortest distance of the parabola y2=4xy^2=4 x from the centre of the circle x2+y24x16y+64=0x^2+y^2-4 x-16 y+64=0 is d\mathrm{d}, then d2\mathrm{d}^2 is equal to :

Options:

A)

16

B)

24

C)

20

D)

36

Question 35

If (a,b)(a, b) be the orthocentre of the triangle whose vertices are (1,2),(2,3)(1,2),(2,3) and (3,1)(3,1), and I1=abxsin(4xx2)dx,I2=absin(4xx2)dx\mathrm{I}_1=\int\limits_{\mathrm{a}}^{\mathrm{b}} x \sin \left(4 x-x^2\right) \mathrm{d} x, \mathrm{I}_2=\int\limits_{\mathrm{a}}^{\mathrm{b}} \sin \left(4 x-x^2\right) \mathrm{d} x, then 36I1I236 \frac{\mathrm{I}_1}{\mathrm{I}_2} is equal to :

Options:

A)

80

B)

72

C)

66

D)

88

Question 36

Let x=x(t)x=x(\mathrm{t}) and y=y(t)y=y(\mathrm{t}) be solutions of the differential equations dxdt+ax=0\frac{\mathrm{d} x}{\mathrm{dt}}+\mathrm{a} x=0 and dydt+by=0\frac{\mathrm{d} y}{\mathrm{dt}}+\mathrm{by}=0 respectively, a,bR\mathrm{a}, \mathrm{b} \in \mathbf{R}. Given that x(0)=2;y(0)=1x(0)=2 ; y(0)=1 and 3y(1)=2x(1)3 y(1)=2 x(1), the value of t\mathrm{t}, for which x(t)=y(t)x(\mathrm{t})=y(\mathrm{t}), is :

Options:

A)

log232\log _{\frac{2}{3}} 2

B)

log432\log _{\frac{4}{3}} 2

C)

log43\log _4 3

D)

log34\log _3 4

Question 37

The distance, of the point (7,2,11)(7,-2,11) from the line

x61=y40=z83\frac{x-6}{1}=\frac{y-4}{0}=\frac{z-8}{3} along the line x52=y13=z56\frac{x-5}{2}=\frac{y-1}{-3}=\frac{z-5}{6}, is :

Options:

A)

12

B)

18

C)

21

D)

14

Question 38

The length of the chord of the ellipse x225+y216=1\frac{x^2}{25}+\frac{y^2}{16}=1, whose mid point is (1,25)\left(1, \frac{2}{5}\right), is equal to :

Options:

A)

16915\frac{\sqrt{1691}}{5}

B)

20095\frac{\sqrt{2009}}{5}

C)

15415\frac{\sqrt{1541}}{5}

D)

17415\frac{\sqrt{1741}}{5}

Question 39

Consider the function.

f(x)={a(7x12x2)bx27x+12,x<32sin(x3)x[x],x>3 b,x=3, f(x)=\left\{\begin{array}{cc} \frac{\mathrm{a}\left(7 x-12-x^2\right)}{\mathrm{b}\left|x^2-7 x+12\right|} & , x<3 \\\\ 2^{\frac{\sin (x-3)}{x-[x]}} & , x>3 \\\\ \mathrm{~b} & , x=3, \end{array}\right.

where [x][x] denotes the greatest integer less than or equal to xx. If S\mathrm{S} denotes the set of all ordered pairs (a, b) such that f(x)f(x) is continuous at x=3x=3, then the number of elements in S\mathrm{S} is :

Options:

A)

Infinitely many

B)

4

C)

2

D)

1

Question 40

If a=limx01+1+x42x4\mathrm{a}=\lim\limits_{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4} and b=limx0sin2x21+cosx\mathrm{b}=\lim\limits _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}, then the value of ab3a b^3 is :

Options:

A)

36

B)

25

C)

32

D)

30

Question 41

Consider the matrix f(x)=[cosxsinx0sinxcosx0001]f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right].

Given below are two statements :

Statement I : f(x) f(-x) is the inverse of the matrix f(x)f(x).

Statement II : f(x)f(y)=f(x+y)f(x) f(y)=f(x+y).

In the light of the above statements, choose the correct answer from the options given below :

Options:

A)

Statement I is false but Statement II is true

B)

Both Statement I and Statement II are false

C)

Both Statement I and Statement II are true

D)

Statement I is true but Statement II is false

Question 42

Four distinct points (2k,3k),(1,0),(0,1)(2 k, 3 k),(1,0),(0,1) and (0,0)(0,0) lie on a circle for kk equal to :

Options:

A)

313\frac{3}{13}

B)

213\frac{2}{13}

C)

513\frac{5}{13}

D)

113\frac{1}{13}

Question 43

If the shortest distance between the lines

x41=y+12=z3\frac{x-4}{1}=\frac{y+1}{2}=\frac{z}{-3} and xλ2=y+14=z25\frac{x-\lambda}{2}=\frac{y+1}{4}=\frac{z-2}{-5} is 65\frac{6}{\sqrt{5}}, then the sum of all possible values of λ\lambda is :

Options:

A)

10

B)

5

C)

7

D)

8

Question 44

The portion of the line 4x+5y=204 x+5 y=20 in the first quadrant is trisected by the lines L1\mathrm{L}_1 and L2\mathrm{L}_2 passing through the origin. The tangent of an angle between the lines L1\mathrm{L}_1 and L2\mathrm{L}_2 is :

Options:

A)

3041\frac{30}{41}

B)

85\frac{8}{5}

C)

25\frac{2}{5}

D)

2541\frac{25}{41}

Question 45

n1Cr=(k28)nCr+1{ }^{n-1} C_r=\left(k^2-8\right){ }^n C_{r+1} if and only if :

Options:

A)

22<k<232 \sqrt{2}<\mathrm{k}<2 \sqrt{3}

B)

22<k32 \sqrt{2}<\mathrm{k} \leq 3

C)

23<k<332 \sqrt{3}<\mathrm{k}<3 \sqrt{3}

D)

23<k322 \sqrt{3}<\mathrm{k} \leq 3 \sqrt{2}

Question 46

The number of common terms in the progressions

4,9,14,19,4,9,14,19, \ldots \ldots, up to 25th 25^{\text {th }} term and

3,6,9,12,3,6,9,12, \ldots \ldots, up to 37th 37^{\text {th }} term is :

Options:

A)

9

B)

8

C)

5

D)

7

Question 47

Let a1,a2,a10\mathrm{a}_1, \mathrm{a}_2, \ldots \mathrm{a}_{10} be 10 observations such that k=110ak=50\sum\limits_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50 and k<jakaj=1100\sum\limits_{\forall \mathrm{k} < \mathrm{j}} \mathrm{a}_{\mathrm{k}} \cdot \mathrm{a}_{\mathrm{j}}=1100. Then the standard deviation of a1,a2,,a10\mathrm{a}_1, \mathrm{a}_2, \ldots, \mathrm{a}_{10} is equal to :

Options:

A)

5

B)

115\sqrt{115}

C)

10

D)

5\sqrt{5}

Question 48

Let a=i^+2j^+k^,\overrightarrow{\mathrm{a}}=\hat{i}+2 \hat{j}+\hat{k},
b=3(i^j^+k^)\overrightarrow{\mathrm{b}}=3(\hat{i}-\hat{j}+\hat{k}).
Let c\overrightarrow{\mathrm{c}} be the vector such that a×c=b\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}} and ac=3\vec{a} \cdot \vec{c}=3.
Then a((c×b)bc)\vec{a} \cdot((\vec{c} \times \vec{b})-\vec{b}-\vec{c}) is equal to :

Options:

A)

32

B)

36

C)

24

D)

20

Question 49

If A denotes the sum of all the coefficients in the expansion of (13x+10x2)n\left(1-3 x+10 x^2\right)^{\mathrm{n}} and B denotes the sum of all the coefficients in the expansion of (1+x2)n\left(1+x^2\right)^n, then :

Options:

A)

B=A3\mathrm{B}=\mathrm{A}^3

B)

3A=B3 \mathrm{A}=\mathrm{B}

C)

A=3BA=3 B

D)

A=B3\mathrm{A}=\mathrm{B}^3

Question 50

The function f:N{1}Nf: \mathbf{N}-\{1\} \rightarrow \mathbf{N}; defined by f(n)=f(\mathrm{n})= the highest prime factor of n\mathrm{n}, is :

Options:

A)

one-one only

B)

neither one-one nor onto

C)

onto only

D)

both one-one and onto

Numerical TypeQuestion 51

If 8=3+14(3+p)+142(3+2p)+143(3+3p)+8=3+\frac{1}{4}(3+p)+\frac{1}{4^2}(3+2 p)+\frac{1}{4^3}(3+3 p)+\cdots \cdots \infty, then the value of pp is ____________.

Numerical TypeQuestion 52

If the solution of the differential equation

(2x+3y2)dx+(4x+6y7)dy=0,y(0)=3(2 x+3 y-2) \mathrm{d} x+(4 x+6 y-7) \mathrm{d} y=0, y(0)=3, is

αx+βy+3loge2x+3yγ=6\alpha x+\beta y+3 \log _e|2 x+3 y-\gamma|=6, then α+2β+3γ\alpha+2 \beta+3 \gamma is equal to ____________.

Numerical TypeQuestion 53

Let f(x)=x3+x2f(1)+xf(2)+f(3),xRf(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in \mathbf{R}. Then f(10)f^{\prime}(10) is equal to ____________.

Numerical TypeQuestion 54

Let the set of all aRa \in \mathbf{R} such that the equation cos2x+asinx=2a7\cos 2 x+a \sin x=2 a-7 has a solution be [p,q][p, q] and r=tan9tan271cot63+tan81r=\tan 9^{\circ}-\tan 27^{\circ}-\frac{1}{\cot 63^{\circ}}+\tan 81^{\circ}, then pqr is equal to ____________.

Numerical TypeQuestion 55

Let for a differentiable function f:(0,)R,f(x)f(y)loge(xy)+xy,x,y(0,)f:(0, \infty) \rightarrow \mathbf{R}, f(x)-f(y) \geqslant \log _{\mathrm{e}}\left(\frac{x}{y}\right)+x-y, \forall x, y \in(0, \infty). Then n=120f(1n2)\sum\limits_{n=1}^{20} f^{\prime}\left(\frac{1}{n^2}\right) is equal to ____________.

Numerical TypeQuestion 56

Let the area of the region {(x,y):x2y+40,x+2y20,x+4y28,y0}\left\{(x, y): x-2 y+4 \geqslant 0, x+2 y^2 \geqslant 0, x+4 y^2 \leq 8, y \geqslant 0\right\} be mn\frac{\mathrm{m}}{\mathrm{n}}, where m\mathrm{m} and n\mathrm{n} are coprime numbers. Then m+n\mathrm{m}+\mathrm{n} is equal to _____________.

Numerical TypeQuestion 57

Let A=[201110101],B=[B1,B2,B3]A=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], B=\left[B_1, B_2, B_3\right], where B1,B2,B3B_1, B_2, B_3 are column matrics, and

AB1=[100],AB2=[230],AB3=[321] \mathrm{AB}_1=\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right], \mathrm{AB}_2=\left[\begin{array}{l} 2 \\ 3 \\ 0 \end{array}\right], \quad \mathrm{AB}_3=\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right]

If α=B\alpha=|B| and β\beta is the sum of all the diagonal elements of BB, then α3+β3\alpha^3+\beta^3 is equal to ____________.

Numerical TypeQuestion 58

The least positive integral value of α\alpha, for which the angle between the vectors αi^2j^+2k^\alpha \hat{i}-2 \hat{j}+2 \hat{k} and αi^+2αj^2k^\alpha \hat{i}+2 \alpha \hat{j}-2 \hat{k} is acute, is ___________.

Numerical TypeQuestion 59

If α\alpha satisfies the equation x2+x+1=0x^2+x+1=0 and (1+α)7=A+Bα+Cα2,A,B,C0(1+\alpha)^7=A+B \alpha+C \alpha^2, A, B, C \geqslant 0, then 5(3A2BC)5(3 A-2 B-C) is equal to ____________.

Numerical TypeQuestion 60

A fair die is tossed repeatedly until a six is obtained. Let XX denote the number of tosses required and let

a=P(X=3),b=P(X3)a=P(X=3), b=P(X \geqslant 3) and c=P(X6X>3)c=P(X \geqslant 6 \mid X>3). Then b+ca\frac{b+c}{a} is equal to __________.

Question 61

Position of an ant (S\mathrm{S} in metres) moving in Y\mathrm{Y}-Z\mathrm{Z} plane is given by S=2t2j^+5k^S=2 t^2 \hat{j}+5 \hat{k} (where tt is in second). The magnitude and direction of velocity of the ant at t=1 s\mathrm{t}=1 \mathrm{~s} will be :

Options:

A)

16 m/s16 \mathrm{~m} / \mathrm{s} in yy-direction

B)

4 m/s4 \mathrm{~m} / \mathrm{s} in xx-direction

C)

9 m/s9 \mathrm{~m} / \mathrm{s} in z\mathrm{z}-direction

D)

4 m/s4 \mathrm{~m} / \mathrm{s} in yy-direction

Question 62

Given below are two statements :

Statement (I) :Viscosity of gases is greater than that of liquids.

Statement (II) : Surface tension of a liquid decreases due to the presence of insoluble impurities.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Statement I is correct but statement II is incorrect

B)

Statement I is incorrect but Statement II is correct

C)

Both Statement I and Statement II are incorrect

D)

Both Statement I and Statement II are correct

Question 63

If the refractive index of the material of a prism is cot(A2)\cot \left(\frac{A}{2}\right), where AA is the angle of prism then the angle of minimum deviation will be

Options:

A)

π2 A\pi-2 \mathrm{~A}

B)

π22 A\frac{\pi}{2}-2 \mathrm{~A}

C)

πA\pi-\mathrm{A}

D)

π2A\frac{\pi}{2}-\mathrm{A}

Question 64

A proton moving with a constant velocity passes through a region of space without any change in its velocity. If E\overrightarrow{\mathrm{E}} and B\overrightarrow{\mathrm{B}} represent the electric and magnetic fields respectively, then the region of space may have :

(A) E=0, B=0\mathrm{E}=0, \mathrm{~B}=0

(B) E=0, B0\mathrm{E}=0, \mathrm{~B} \neq 0

(C) E0, B=0\mathrm{E} \neq 0, \mathrm{~B}=0

(D) E0, B0\mathrm{E} \neq 0, \mathrm{~B} \neq 0

Choose the most appropriate answer from the options given below :

Options:

A)

(A), (B) and (C) only

B)

(A), (C) and (D) only

C)

(A), (B) and (D) only

D)

(B), (C) and (D) only

Question 65

The acceleration due to gravity on the surface of earth is g\mathrm{g}. If the diameter of earth reduces to half of its original value and mass remains constant, then acceleration due to gravity on the surface of earth would be :

Options:

A)

g/4

B)

2g

C)

g/2

D)

4g

Question 66

A train is moving with a speed of 12 m/s12 \mathrm{~m} / \mathrm{s} on rails which are 1.5 m1.5 \mathrm{~m} apart. To negotiate a curve radius 400 m400 \mathrm{~m}, the height by which the outer rail should be raised with respect to the inner rail is (Given, g=10 m/s2)g=10 \mathrm{~m} / \mathrm{s}^2) :

Options:

A)

6.0 cm

B)

5.4 cm

C)

4.8 cm

D)

4.2 cm

Question 67

Which of the following circuits is reverse - biased?

Options:

A)

JEE Main 2024 (Online) 27th January Morning Shift Physics - Semiconductor Question 8 English Option 1

B)

JEE Main 2024 (Online) 27th January Morning Shift Physics - Semiconductor Question 8 English Option 2

C)

JEE Main 2024 (Online) 27th January Morning Shift Physics - Semiconductor Question 8 English Option 3

D)

JEE Main 2024 (Online) 27th January Morning Shift Physics - Semiconductor Question 8 English Option 4

Question 68

Identify the physical quantity that cannot be measured using spherometer :

Options:

A)

Radius of curvature of concave surface

B)

Specific rotation of liquids

C)

Thickness of thin plates

D)

Radius of curvature of convex surface

Question 69

Two bodies of mass 4 g4 \mathrm{~g} and 25 g25 \mathrm{~g} are moving with equal kinetic energies. The ratio of magnitude of their linear momentum is :

Options:

A)

3:53: 5

B)

5:45: 4

C)

2:52: 5

D)

4:54: 5

Question 70

0.08 kg0.08 \mathrm{~kg} air is heated at constant volume through 5C5^{\circ} \mathrm{C}. The specific heat of air at constant volume is 0.17 kcal/kgC0.17 \mathrm{~kcal} / \mathrm{kg}^{\circ} \mathrm{C} and J=4.18\mathrm{J}=4.18 joule/ cal\mathrm{~cal}. The change in its internal energy is approximately.

Options:

A)

318 J

B)

298 J

C)

284 J

D)

142 J

Question 71

The radius of third stationary orbit of electron for Bohr's atom is R. The radius of fourth stationary orbit will be:

Options:

A)

43R\frac{4}{3} \mathrm{R}

B)

169R\frac{16}{9} R

C)

34R\frac{3}{4} R

D)

916R\frac{9}{16} \mathrm{R}

Question 72

A rectangular loop of length 2.5 m2.5 \mathrm{~m} and width 2 m2 \mathrm{~m} is placed at 6060^{\circ} to a magnetic field of 4 T4 \mathrm{~T}. The loop is removed from the field in 10 sec10 \mathrm{~sec}. The average emf induced in the loop during this time is

Options:

A)

2 V-2 \mathrm{~V}

B)

+2 V+2 \mathrm{~V}

C)

+1 V+1 \mathrm{~V}

D)

1 V-1 \mathrm{~V}

Question 73

An electric charge 106μC10^{-6} \mu \mathrm{C} is placed at origin (0,0)(0,0) m\mathrm{m} of XY\mathrm{X}-\mathrm{Y} co-ordinate system. Two points P\mathrm{P} and Q\mathrm{Q} are situated at (3,3)m(\sqrt{3}, \sqrt{3}) \mathrm{m} and (6,0)m(\sqrt{6}, 0) \mathrm{m} respectively. The potential difference between the points \mathrm{P}$ and $\mathrm{Q} will be :

Options:

A)

3 V\sqrt{3} \mathrm{~V}

B)

6 V\sqrt{6} \mathrm{~V}

C)

0 V0 \mathrm{~V}

D)

3 V3 \mathrm{~V}

Question 74

A convex lens of focal length 40 cm40 \mathrm{~cm} forms an image of an extended source of light on a photoelectric cell. A current I is produced. The lens is replaced by another convex lens having the same diameter but focal length 20 cm20 \mathrm{~cm}. The photoelectric current now is :

Options:

A)

I2\mathrm{\frac{I}{2}}

B)

4 I

C)

2 I

D)

I

Question 75

A body of mass 1000 kg1000 \mathrm{~kg} is moving horizontally with a velocity 6 m/s6 \mathrm{~m} / \mathrm{s}. If 200 kg200 \mathrm{~kg} extra mass is added, the final velocity (in m/s\mathrm{m} / \mathrm{s}) is:

Options:

A)

6

B)

2

C)

3

D)

5

Question 76

A plane electromagnetic wave propagating in x\mathrm{x}-direction is described by

Ey=(200Vm1)sin[1.5×107t0.05x]E_y=\left(200 \mathrm{Vm}^{-1}\right) \sin \left[1.5 \times 10^7 t-0.05 x\right] \text {; }

The intensity of the wave is :

(Use ϵ0=8.85×1012C2 N1 m2\epsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2})

Options:

A)

35.4 Wm235.4 \mathrm{~Wm}^{-2}

B)

53.1 Wm253.1 \mathrm{~Wm}^{-2}

C)

26.6 Wm226.6 \mathrm{~Wm}^{-2}

D)

106.2 Wm2106.2 \mathrm{~Wm}^{-2}

Question 77

Given below are two statements :

Statement (I) : Planck's constant and angular momentum have same dimensions.

Statement (II) : Linear momentum and moment of force have same dimensions.

In the light of the above statements, choose the correct answer from the options given below :

Options:

A)

Statement I is true but Statement II is false

B)

Both Statement I and Statement II are false

C)

Both Statement I and Statement II are true

D)

Statement I is false but Statement II is true

Question 78

A wire of length 10 cm10 \mathrm{~cm} and radius 7×104 m\sqrt{7} \times 10^{-4} \mathrm{~m} connected across the right gap of a meter bridge. When a resistance of 4.5Ω4.5 \Omega is connected on the left gap by using a resistance box, the balance length is found to be at 60 cm60 \mathrm{~cm} from the left end. If the resistivity of the wire is R×107Ωm\mathrm{R} \times 10^{-7} \Omega \mathrm{m}, then value of R\mathrm{R} is :

Options:

A)

63

B)

70

C)

66

D)

35

Question 79

A wire of resistance R\mathrm{R} and length L\mathrm{L} is cut into 5 equal parts. If these parts are joined parallely, then resultant resistance will be :

Options:

A)

125R\frac{1}{25} \mathrm{R}

B)

15R\frac{1}{5} R

C)

25 R

D)

5 R

Question 80

The average kinetic energy of a monatomic molecule is 0.414 eV0.414 \mathrm{~eV} at temperature :

(Use KB=1.38×1023 J/molKK_B=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{mol}-\mathrm{K})

Options:

A)

3000 K

B)

3200 K

C)

1600 K

D)

1500 K

Numerical TypeQuestion 81

A particle starts from origin at t=0t=0 with a velocity 5i^ m/s5 \hat{i} \mathrm{~m} / \mathrm{s} and moves in xyx-y plane under action of a force which produces a constant acceleration of (3i^+2j^)m/s2(3 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}^2. If the xx-coordinate of the particle at that instant is 84 m84 \mathrm{~m}, then the speed of the particle at this time is α m/s\sqrt{\alpha} \mathrm{~m} / \mathrm{s}. The value of α\alpha is _________.

Numerical TypeQuestion 82

A thin metallic wire having cross sectional area of 104 m210^{-4} \mathrm{~m}^2 is used to make a ring of radius 30 cm30 \mathrm{~cm}. A positive charge of 2π C2 \pi \mathrm{~C} is uniformly distributed over the ring, while another positive charge of 30 pC\mathrm{pC} is kept at the centre of the ring. The tension in the ring is ______ N\mathrm{N}; provided that the ring does not get deformed (neglect the influence of gravity). (given, 14πϵ0=9×109\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 SI units)

Numerical TypeQuestion 83

Two coils have mutual inductance 0.002 H0.002 \mathrm{~H}. The current changes in the first coil according to the relation i=i0sinωt\mathrm{i}=\mathrm{i}_0 \sin \omega \mathrm{t}, where i0=5 A\mathrm{i}_0=5 \mathrm{~A} and ω=50π\omega=50 \pi rad/s. The maximum value of emf in the second coil is πα V\frac{\pi}{\alpha} \mathrm{~V}. The value of α\alpha is _______.

Numerical TypeQuestion 84

Two immiscible liquids of refractive indices 85\frac{8}{5} and 32\frac{3}{2} respectively are put in a beaker as shown in the figure. The height of each column is 6 cm6 \mathrm{~cm}. A coin is placed at the bottom of the beaker. For near normal vision, the apparent depth of the coin is α4 cm\frac{\alpha}{4} \mathrm{~cm}. The value of α\alpha is _________.

JEE Main 2024 (Online) 27th January Morning Shift Physics - Geometrical Optics Question 8 English

Numerical TypeQuestion 85

In a nuclear fission process, a high mass nuclide (A236)(A \approx 236) with binding energy 7.6 MeV/7.6 \mathrm{~MeV} / Nucleon dissociated into middle mass nuclides (A118)(\mathrm{A} \approx 118), having binding energy of 8.6 MeV/Nucleon8.6 \mathrm{~MeV} / \mathrm{Nucleon}. The energy released in the process would be ______ MeV\mathrm{MeV}.

Numerical TypeQuestion 86

Four particles each of mass 1 kg1 \mathrm{~kg} are placed at four corners of a square of side 2 m2 \mathrm{~m}. Moment of inertia of system about an axis perpendicular to its plane and passing through one of its vertex is _____ kgm2\mathrm{kgm}^2.

JEE Main 2024 (Online) 27th January Morning Shift Physics - Rotational Motion Question 10 English

Numerical TypeQuestion 87

A particle executes simple harmonic motion with an amplitude of 4 cm4 \mathrm{~cm}. At the mean position, velocity of the particle is 10 cm/s10 \mathrm{~cm} / \mathrm{s}. The distance of the particle from the mean position when its speed becomes 5 cm/s5 \mathrm{~cm} / \mathrm{s} is α cm\sqrt{\alpha} \mathrm{~cm}, where α=\alpha= ________.

Numerical TypeQuestion 88

Two long, straight wires carry equal currents in opposite directions as shown in figure. The separation between the wires is 5.0 cm5.0 \mathrm{~cm}. The magnitude of the magnetic field at a point P\mathrm{P} midway between the wires is _______ μT\mu \mathrm{T}

(Given : μ0=4π×107TmA1\mu_0=4 \pi \times 10^{-7} \mathrm{TmA}^{-1})

JEE Main 2024 (Online) 27th January Morning Shift Physics - Magnetic Effect of Current Question 10 English

Numerical TypeQuestion 89

The charge accumulated on the capacitor connected in the following circuit is _______ μC\mu \mathrm{C} (Given C=150μF)\mathrm{C}=150 \mu \mathrm{F})

JEE Main 2024 (Online) 27th January Morning Shift Physics - Capacitor Question 5 English

Numerical TypeQuestion 90

If average depth of an ocean is 4000 m4000 \mathrm{~m} and the bulk modulus of water is 2×109 Nm22 \times 10^9 \mathrm{~Nm}^{-2}, then fractional compression ΔVV\frac{\Delta V}{V} of water at the bottom of ocean is α×102\alpha \times 10^{-2}. The value of α\alpha is _______ (Given, g=10 ms2,ρ=1000 kg m3\mathrm{g}=10 \mathrm{~ms}^{-2}, \rho=1000 \mathrm{~kg} \mathrm{~m}^{-3})