Jeehub Logo

Apr 13, 2023

JEE Mains

Shift: 1

Total Questions Available: 72

Question 1

In which of the following processes, the bond order increases and paramagnetic character changes to diamagnetic one ?

Options:

A)

O2O22\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{2-}

B)

N2N2+\mathrm{N}_{2} \rightarrow \mathrm{N}_{2}^{+}

C)

NONO+\mathrm{NO} \rightarrow \mathrm{NO}^{+}

D)

O2O2+\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}

Question 2

Which of the following statements are not correct?

A. The electron gain enthalpy of F\mathrm{F} is more negative than that of Cl\mathrm{Cl}.

B. Ionization enthalpy decreases in a group of periodic table.

C. The electronegativity of an atom depends upon the atoms bonded to it.

D. Al2O3\mathrm{Al}_{2} \mathrm{O}_{3} and NO\mathrm{NO} are examples of amphoteric oxides.

Choose the most appropriate answer from the options given below :

Options:

A)

A, B, C and D

B)

A, C and D Only

C)

A, B and D Only

D)

B and D Only

Question 3

In the following reaction 'X' is

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Haloalkanes and Haloarenes Question 23 English

Options:

A)

CH3(CH2)4CH2Cl\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{Cl}

B)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Haloalkanes and Haloarenes Question 23 English Option 2

C)

ClCH2(CH2)4CH2Cl\mathrm{Cl}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{2}-\mathrm{Cl}

D)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Haloalkanes and Haloarenes Question 23 English Option 4

Question 4

In the reaction given below

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 28 English

'A' is

Options:

A)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 28 English Option 1

B)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 28 English Option 2

C)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 28 English Option 3

D)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 28 English Option 4

Question 5

The mismatched combinations are

A. Chlorophyll - Co

B. Water hardness - EDTA

C. Photography [Ag(CN)2]-\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}

D. Wilkinson catalyst [(Ph3P)3RhCl]-\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}\right]

E. Chelating ligand - D-Penicillamine

Choose the correct answer from the options given below :

Options:

A)

A and E Only

B)

D and E Only

C)

A and C Only

D)

A, C, and E Only

Question 6

ClF5\mathrm{ClF}_{5} at room temperature is a:

Options:

A)

Colourless liquid with square pyramidal geometry

B)

Colourless gas with square pyramidal geometry

C)

Colourless gas with trigonal bipyramidal geometry.

D)

Colourless liquid with trigonal bipyramidal geometry

Question 7

Among the following compounds, the one which shows highest dipole moment is

Options:

A)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Basics of Organic Chemistry Question 42 English Option 1

B)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Basics of Organic Chemistry Question 42 English Option 2

C)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Basics of Organic Chemistry Question 42 English Option 3

D)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Basics of Organic Chemistry Question 42 English Option 4

Question 8

2-Methyl propyl bromide reacts with C2H5O\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-} and gives 'A' whereas on reaction with C2H5OH\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} it gives 'B'. The mechanism followed in these reactions and the products 'A' and 'B' respectively are :

Options:

A)

SN1,A=\mathrm{S}_{N} 1, A= tert-butyl ethyl ether; SN2,B=\mathrm{S}_{N} 2, B= iso-butyl ethyl ether

B)

SN1, A=\mathrm{S}_{\mathrm{N}} 1, \mathrm{~A}= tert-butyl ethyl ether; SN1, B=\mathrm{S}_{\mathrm{N}} 1, \mathrm{~B}= 2-butyl ethyl ether

C)

SN2, A=\mathrm{S}_{\mathrm{N}} 2, \mathrm{~A}= iso-butyl ethyl ether; SN1, B=\mathrm{S}_{\mathrm{N}} 1, \mathrm{~B}= tert-butyl ethyl ether

D)

SN2, A=\mathrm{S}_{\mathrm{N}} 2, \mathrm{~A}= 2-butyl ethyl ether; SN2, B=\mathrm{S}_{\mathrm{N}} 2, \mathrm{~B}= iso-butyl ethyl ether

Question 9

The pair of lanthanides in which both elements have high third - ionization energy is :

Options:

A)

Dy, Gd

B)

Lu, Yb

C)

Eu, Yb

D)

Eu, Gd

Question 10

In the reaction given below

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Compounds Containing Nitrogen Question 24 English

'B' is

Options:

A)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Compounds Containing Nitrogen Question 24 English Option 1

B)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Compounds Containing Nitrogen Question 24 English Option 2

C)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Compounds Containing Nitrogen Question 24 English Option 3

D)

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Compounds Containing Nitrogen Question 24 English Option 4

Question 11

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Hydrocarbons Question 20 English

In the above reaction, left hand side and right hand side rings are named as 'A\mathrm{A}' and 'B' respectively. They undergo ring expansion. The correct statement for this process is:

Options:

A)

Finally both rings will become six membered each.

B)

Only A will become 6 membered.

C)

Ring expansion can go upto seven membered rings

D)

Finally both rings will become five membered each.

Question 12

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Biomolecules Question 20 English

The products formed in the above reaction are

Options:

A)

Two optically active products

B)

One optically active and one meso product

C)

Two optically inactive products

D)

One optically inactive and one meso product.

Question 13

The energy of an electron in the first Bohr orbit of hydrogen atom is 2.18×1018 J-2.18 \times 10^{-18} \mathrm{~J}. Its energy in the third Bohr orbit is ____________.

Options:

A)

One third of this value

B)

Three times of this value

C)

19\frac{1}{9} th of this value

D)

127\frac{1}{27} of this value

Numerical TypeQuestion 14

KMnO4\mathrm{KMnO}_{4} is titrated with ferrous ammonium sulphate hexahydrate in presence of dilute H2SO4\mathrm{H}_{2} \mathrm{SO}_{4}. Number of water molecules produced for 2 molecules of KMnO4\mathrm{KMnO}_{4} is ___________.

Numerical TypeQuestion 15

An organic compound gives 0.220 g0.220 \mathrm{~g} of CO2\mathrm{CO}_{2} and 0.126 g0.126 \mathrm{~g} of H2O\mathrm{H}_{2} \mathrm{O} on complete combustion. If the %\% of carbon is 24 then the %\% of hydrogen is __________ ×101\times 10^{-1}. ( Nearest integer)

Numerical TypeQuestion 16

t87.5\mathrm{t}_{87.5} is the time required for the reaction to undergo 87.5%87.5 \% completion and t50\mathrm{t}_{50} is the time required for the reaction to undergo 50%50 \% completion. The relation between t87.5\mathrm{t}_{87.5} and t50\mathrm{t}_{50} for a first order reaction is t87.5=x×t50\mathrm{t}_{87.5}=x \times \mathrm{t}_{50} The value of xx is ___________. (Nearest integer)

Numerical TypeQuestion 17

For the given reaction

JEE Main 2023 (Online) 13th April Morning Shift Chemistry - Hydrocarbons Question 19 English

The total number of possible products formed by tertiary carbocation of A is ____________.

Numerical TypeQuestion 18

20 mL20 \mathrm{~mL} of calcium hydroxide was consumed when it was reacted with 10 mL10 \mathrm{~mL} of unknown solution of H2SO4\mathrm{H}_{2} \mathrm{SO}_{4}. Also 20 mL20 \mathrm{~mL} standard solution of 0.5 M HCl0.5 ~\mathrm{M} ~\mathrm{HCl} containing 2 drops of phenolphthalein was titrated with calcium hydroxide, the mixture showed pink colour when burette displayed the value of 35.5 mL35.5 \mathrm{~mL} whereas the burette showed 25.5 mL25.5 \mathrm{~mL} initially. The concentration of H2SO4\mathrm{H}_{2} \mathrm{SO}_{4} is _____________ M. (Nearest integer)

Numerical TypeQuestion 19

Solution of 12 g12 \mathrm{~g} of non-electrolyte (A) prepared by dissolving it in 1000 mL1000 \mathrm{~mL} of water exerts the same osmotic pressure as that of 0.05 M0.05 ~\mathrm{M} glucose solution at the same temperature. The empirical formula of A\mathrm{A} is CH2O\mathrm{CH}_{2} \mathrm{O}. The molecular mass of A\mathrm{A} is __________ g. (Nearest integer)

Numerical TypeQuestion 20

A metal surface of 100 cm2100 \mathrm{~cm}^{2} area has to be coated with nickel layer of thickness 0.001 mm0.001 \mathrm{~mm}. A current of 2 A2 \mathrm{~A} was passed through a solution of Ni(NO3)2\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} for 'x\mathrm{x}' seconds to coat the desired layer. The value of x\mathrm{x} is __________. (Nearest integer) ( ρNi\rho_{\mathrm{Ni}} (density of Nickel) is 10 g mL10 \mathrm{~g} \mathrm{~mL}, Molar mass of Nickel is 60 g mol160 \mathrm{~g} \mathrm{~mol}^{-1} F=96500 C mol1)\left.\mathrm{F}=96500 ~\mathrm{C} ~\mathrm{mol}^{-1}\right)

Numerical TypeQuestion 21

A2+B22AB.ΔHf0=200 kJ mol1\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB} . \Delta H_{f}^{0}=-200 \mathrm{~kJ} \mathrm{~mol}^{-1}

AB,A2\mathrm{AB}, \mathrm{A}_{2} and B2\mathrm{B}_{2} are diatomic molecules. If the bond enthalpies of A2, B2\mathrm{A}_{2}, \mathrm{~B}_{2} and AB\mathrm{AB} are in the ratio 1:0.5:11: 0.5: 1, then the bond enthalpy of A2\mathrm{A}_{2} is ____________ kJ mol1\mathrm{kJ} ~\mathrm{mol}^{-1} (Nearest integer)

Numerical TypeQuestion 22

25.0 mL25.0 \mathrm{~mL} of 0.050 M Ba(NO3)20.050 ~\mathrm{M} ~\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} is mixed with 25.0 mL25.0 \mathrm{~mL} of 0.020 M NaF.KSp0.020 ~\mathrm{M} ~\mathrm{NaF} . \mathrm{K}_{\mathrm{Sp}} of BaF2\mathrm{BaF}_{2} is 0.5×1060.5 \times 10^{-6} at 298 K298 \mathrm{~K}. The ratio of [Ba2+][F]2\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} and Ksp\mathrm{K}_{\mathrm{sp}} is ___________.

(Nearest integer)

Question 23

The area of the region enclosed by the curve f(x)=max{sinx,cosx},πxπf(x)=\max \{\sin x, \cos x\},-\pi \leq x \leq \pi and the xx-axis is

Options:

A)

22(2+1)2 \sqrt{2}(\sqrt{2}+1)

B)

4

C)

2(2+1)2(\sqrt{2}+1)

D)

4(2)4(\sqrt{2})

Question 24

Let PQ\mathrm{PQ} be a focal chord of the parabola y2=36xy^{2}=36 x of length 100 , making an acute angle with the positive xx-axis. Let the ordinate of P\mathrm{P} be positive and M\mathrm{M} be the point on the line segment PQ such that PM : MQ = 3 : 1. Then which of the following points does NOT lie on the line passing through M and perpendicular to the line PQ\mathrm{PQ}?

Options:

A)

(6,29)(6,29)

B)

(3,43)(-3,43)

C)

(3,33)(3,33)

D)

(6,45)(-6,45)

Question 25

Let a=i^+4j^+2k^,b=3i^2j^+7k^\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k} and c=2i^j^+4k^\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}. If a vector d\vec{d} satisfies d×b=c×b\vec{d} \times \vec{b}=\vec{c} \times \vec{b} and da=24\vec{d} \cdot \vec{a}=24, then d2|\vec{d}|^{2} is equal to :

Options:

A)

313

B)

413

C)

423

D)

323

Question 26

For the system of linear equations

2x+4y+2az=b2 x+4 y+2 a z=b

x+2y+3z=4x+2 y+3 z=4

2x5y+2z=82 x-5 y+2 z=8

which of the following is NOT correct?

Options:

A)

It has infinitely many solutions if a=3,b=8a=3, b=8

B)

It has infinitely many solutions if a=3,b=6a=3, b=6

C)

It has unique solution if a=b=8a=b=8

D)

It has unique solution if a=b=6a=b=6

Question 27

Let y=y1(x)y=y_{1}(x) and y=y2(x)y=y_{2}(x) be the solution curves of the differential equation dydx=y+7\frac{d y}{d x}=y+7 with initial conditions y1(0)=0y_{1}(0)=0 and y2(0)=1y_{2}(0)=1 respectively. Then the curves y=y1(x)y=y_{1}(x) and y=y2(x)y=y_{2}(x) intersect at

Options:

A)

no point

B)

two points

C)

infinite number of points

D)

one point

Question 28

A coin is biased so that the head is 3 times as likely to occur as tail. This coin is tossed until a head or three tails occur. If X\mathrm{X} denotes the number of tosses of the coin, then the mean of X\mathrm{X} is :

Options:

A)

8164\frac{81}{64}

B)

3716\frac{37}{16}

C)

2116\frac{21}{16}

D)

1516\frac{15}{16}

Question 29

The set of all aRa \in \mathbb{R} for which the equation xx1+x+2+a=0x|x-1|+|x+2|+a=0 has exactly one real root, is :

Options:

A)

(,)(-\infty, \infty)

B)

(6,)(-6, \infty)

C)

(,3)(-\infty,-3)

D)

(6,3)(-6,-3)

Question 30

\int_\limits{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x=

Options:

A)

loge(25681)\log _{e}\left(\frac{256}{81}\right)

B)

loge(6427)\log _{e}\left(\frac{64}{27}\right)

C)

loge(3227)\log _{e}\left(\frac{32}{27}\right)

D)

loge(51281)\log _{e}\left(\frac{512}{81}\right)

Question 31

Let s1,s2,s3,,s10s_{1}, s_{2}, s_{3}, \ldots, s_{10} respectively be the sum to 12 terms of 10 A.P. s whose first terms are 1,2,3,.101,2,3, \ldots .10 and the common differences are 1,3,5,,191,3,5, \ldots \ldots, 19 respectively. Then \sum_\limits{i=1}^{10} s_{i} is equal to :

Options:

A)

7360

B)

7220

C)

7260

D)

7380

Question 32

Let B=[13α123αα4],α>2B=\left[\begin{array}{lll}1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4\end{array}\right], \alpha > 2 be the adjoint of a matrix AA and A=2|A|=2. Then [α2αα]B[α2αα]\left[\begin{array}{ccc}\alpha & -2 \alpha & \alpha\end{array}\right] B\left[\begin{array}{c}\alpha \\ -2 \alpha \\ \alpha\end{array}\right] is equal to :

Options:

A)

32

B)

-16

C)

0

D)

16

Question 33

Fractional part of the number 4202215\frac{4^{2022}}{15} is equal to

Options:

A)

815\frac{8}{15}

B)

415\frac{4}{15}

C)

115\frac{1}{15}

D)

1415\frac{14}{15}

Question 34

For xRx \in \mathbb{R}, two real valued functions f(x)f(x) and g(x)g(x) are such that, g(x)=x+1g(x)=\sqrt{x}+1 and fg(x)=x+3xf \circ g(x)=x+3-\sqrt{x}. Then f(0)f(0) is equal to

Options:

A)

5

B)

0

C)

-3

D)

1

Question 35

For the differentiable function f:R{0}Rf: \mathbb{R}-\{0\} \rightarrow \mathbb{R}, let 3f(x)+2f(1x)=1x103 f(x)+2 f\left(\frac{1}{x}\right)=\frac{1}{x}-10, then f(3)+f(14)\left|f(3)+f^{\prime}\left(\frac{1}{4}\right)\right| is equal to

Options:

A)

13

B)

295\frac{29}{5}

C)

335\frac{33}{5}

D)

7

Question 36

\max _\limits{0 \leq x \leq \pi}\left\{x-2 \sin x \cos x+\frac{1}{3} \sin 3 x\right\}=

Options:

A)

5π+2+336\frac{5 \pi+2+3 \sqrt{3}}{6}

B)

0

C)

π+2336\frac{\pi+2-3 \sqrt{3}}{6}

D)

π\pi

Question 37

The number of symmetric matrices of order 3, with all the entries from the set {0,1,2,3,4,5,6,7,8,9}\{0,1,2,3,4,5,6,7,8,9\} is :

Options:

A)

10910^{9}

B)

9109^{10}

C)

10610^{6}

D)

6106^{10}

Numerical TypeQuestion 38

Let the mean of the data

xx 1 3 5 7 9
Frequency (ff) 4 24 28 α\alpha 8

be 5. If mm and σ2\sigma^{2} are respectively the mean deviation about the mean and the variance of the data, then 3αm+σ2\frac{3 \alpha}{m+\sigma^{2}} is equal to __________

Numerical TypeQuestion 39

Let w=zzˉ+k1z+k2iz+λ(1+i),k1,k2Rw=z \bar{z}+k_{1} z+k_{2} i z+\lambda(1+i), k_{1}, k_{2} \in \mathbb{R}. Let Re(w)=0\operatorname{Re}(w)=0 be the circle C\mathrm{C} of radius 1 in the first quadrant touching the line y=1y=1 and the yy-axis. If the curve Im(w)=0\operatorname{Im}(w)=0 intersects C\mathrm{C} at A\mathrm{A} and B\mathrm{B}, then 30(AB)230(A B)^{2} is equal to __________

Numerical TypeQuestion 40

The number of seven digit positive integers formed using the digits 1,2,31,2,3 and 44 only and sum of the digits equal to 1212 is ___________.

Numerical TypeQuestion 41

If S={xR:sin1(x+1x2+2x+2)sin1(xx2+1)=π4}S=\left\{x \in \mathbb{R}: \sin ^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}\right\}, then \sum_\limits{x \in s}\left(\sin \left(\left(x^{2}+x+5\right) \frac{\pi}{2}\right)-\cos \left(\left(x^{2}+x+5\right) \pi\right)\right) is equal to ____________.

Numerical TypeQuestion 42

Let for xR,S0(x)=x,Sk(x)=Ckx+k0xSk1(t)dtx \in \mathbb{R}, S_{0}(x)=x, S_{k}(x)=C_{k} x+k \int_{0}^{x} S_{k-1}(t) d t, where

C0=1,Ck=101Sk1(x)dx,k=1,2,3,C_{0}=1, C_{k}=1-\int_{0}^{1} S_{k-1}(x) d x, k=1,2,3, \ldots Then S2(3)+6C3S_{2}(3)+6 C_{3} is equal to ____________.

Numerical TypeQuestion 43

Let a=3i^+j^k^\vec{a}=3 \hat{i}+\hat{j}-\hat{k} and c=2i^3j^+3k^\vec{c}=2 \hat{i}-3 \hat{j}+3 \hat{k}. If b\vec{b} is a vector such that a=b×c\vec{a}=\vec{b} \times \vec{c} and b2=50|\vec{b}|^{2}=50, then 72b+c2|72-| \vec{b}+\left.\vec{c}\right|^{2} \mid is equal to __________.

Numerical TypeQuestion 44

Let α\alpha be the constant term in the binomial expansion of (x6x32)n,n15\left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^{n}, n \leq 15. If the sum of the coefficients of the remaining terms in the expansion is 649 and the coefficient of xnx^{-n} is λα\lambda \alpha, then λ\lambda is equal to _____________.

Question 45

Which graph represents the difference between total energy and potential energy of a particle executing SHM vs it's distance from mean position ?

Options:

A)

JEE Main 2023 (Online) 13th April Morning Shift Physics - Simple Harmonic Motion Question 17 English Option 1

B)

JEE Main 2023 (Online) 13th April Morning Shift Physics - Simple Harmonic Motion Question 17 English Option 2

C)

JEE Main 2023 (Online) 13th April Morning Shift Physics - Simple Harmonic Motion Question 17 English Option 3

D)

JEE Main 2023 (Online) 13th April Morning Shift Physics - Simple Harmonic Motion Question 17 English Option 4

Question 46

A bullet of 10 g10 \mathrm{~g} leaves the barrel of gun with a velocity of 600 m/s600 \mathrm{~m} / \mathrm{s}. If the barrel of gun is 50 cm50 \mathrm{~cm} long and mass of gun is 3 kg3 \mathrm{~kg}, then value of impulse supplied to the gun will be :

Options:

A)

12 Ns

B)

3 Ns

C)

6 Ns

D)

36 Ns

Question 47

A planet having mass 9Me9 \mathrm{Me} and radius 4Re4 \mathrm{R}_{\mathrm{e}}, where Me\mathrm{Me} and Re\mathrm{Re} are mass and radius of earth respectively, has escape velocity in km/s\mathrm{km} / \mathrm{s} given by:

(Given escape velocity on earth Ve=11.2×103 m/s\mathrm{V}_{\mathrm{e}}=11.2 \times 10^{3} \mathrm{~m} / \mathrm{s} )

Options:

A)

33.6

B)

11.2

C)

16.8

D)

67.2

Question 48

JEE Main 2023 (Online) 13th April Morning Shift Physics - Properties of Matter Question 39 English

The figure shows a liquid of given density flowing steadily in horizontal tube of varying cross - section. Cross sectional areas at A\mathrm{A} is 1.5 cm21.5 \mathrm{~cm}^{2}, and B\mathrm{B} is 25 mm225 \mathrm{~mm}^{2}, if the speed of liquid at B\mathrm{B} is 60 cm/s60 \mathrm{~cm} / \mathrm{s} then (PAPB)\left(\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}\right) is :

(Given PA\mathrm{P}_{\mathrm{A}} and PB\mathrm{P}_{\mathrm{B}} are liquid pressures at A\mathrm{A} and B\mathrm{B}% points.

density ρ=1000 kg m3\rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}

A\mathrm{A} and B\mathrm{B} are on the axis of tube

Options:

A)

27 Pa27 \mathrm{~Pa}

B)

175 Pa175 \mathrm{~Pa}

C)

135 Pa135 \mathrm{~Pa}

D)

36 Pa36 \mathrm{~Pa}

Question 49

A vessel of depth 'dd' is half filled with oil of refractive index n1n_{1} and the other half is filled with water of refractive index n2n_{2}. The apparent depth of this vessel when viewed from above will be-

Options:

A)

2d(n1+n2)n1n2\frac{2 d\left(n_{1}+n_{2}\right)}{n_{1} n_{2}}

B)

d(n1+n2)2n1n2\frac{d\left(n_{1}+n_{2}\right)}{2 n_{1} n_{2}}

C)

dn1n22(n1+n2)\frac{d n_{1} n_{2}}{2\left(n_{1}+n_{2}\right)}

D)

dn1n2(n1+n2)\frac{d n_{1} n_{2}}{\left(n_{1}+n_{2}\right)}

Question 50

The difference between threshold wavelengths for two metal surfaces A\mathrm{A} and B\mathrm{B} having work function ϕA=9 eV\phi_{A}=9 ~\mathrm{eV} and ϕB=45 eV\phi_{B}=4 \cdot 5 ~\mathrm{eV} in nm\mathrm{nm} is:

{\{ Given, hc =1242 eVnm}=1242 ~\mathrm{eV} \mathrm{nm}\}

Options:

A)

264

B)

138

C)

540

D)

276

Question 51

The rms speed of oxygen molecule in a vessel at particular temperature is (1+5x)12v\left(1+\frac{5}{x}\right)^{\frac{1}{2}} v, where vv is the average speed of the molecule. The value of xx will be:

(\left(\right. Take π=227)\left.\pi=\frac{22}{7}\right)

Options:

A)

4

B)

8

C)

28

D)

27

Question 52

The source of time varying magnetic field may be

(A) a permanent magnet

(B) an electric field changing linearly with time

(C) direct current

(D) a decelerating charge particle

(E) an antenna fed with a digital signal

Choose the correct answer from the options given below:

Options:

A)

(D) only

B)

(A) only

C)

(B) and (D) only

D)

(C) and (E) only

Question 53

Two charges each of magnitude 0.01 C0.01 ~\mathrm{C} and separated by a distance of 0.4 mm0.4 \mathrm{~mm} constitute an electric dipole. If the dipole is placed in an uniform electric field 'E\vec{E}' of 10 dyne/C making 3030^{\circ} angle with E\vec{E}, the magnitude of torque acting on dipole is:

Options:

A)

40×1010 Nm4 \cdot 0 \times 10^{-10} ~\mathrm{Nm}

B)

1.5×109 Nm1.5 \times 10^{-9} ~\mathrm{Nm}

C)

1.0×108 Nm1.0 \times 10^{-8} ~\mathrm{Nm}

D)

2.0×1010 Nm2.0 \times 10^{-10} ~\mathrm{Nm}

Question 54

A disc is rolling without slipping on a surface. The radius of the disc is RR. At t=0t=0, the top most point on the disc is A\mathrm{A} as shown in figure. When the disc completes half of its rotation, the displacement of point A from its initial position is

JEE Main 2023 (Online) 13th April Morning Shift Physics - Rotational Motion Question 23 English

Options:

A)

R(π2+1)R\sqrt {({\pi ^2} + 1)}

B)

2R2R

C)

R(π2+4)R\sqrt {({\pi ^2} + 4)}

D)

2R(1+4π2)2R\sqrt {(1 + 4{\pi ^2})}

Question 55

92238A90234B+24D+Q_{92}^{238}A \to _{90}^{234}B + _2^4D + Q

In the given nuclear reaction, the approximate amount of energy released will be:

[Given, mass of 92238 A=238.05079×931.5 MeV/c2,{ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5 ~\mathrm{MeV} / \mathrm{c}^{2},

mass of 90234B=23404363×9315 MeV/c2,{ }_{90}^{234} B=234 \cdot 04363 \times 931 \cdot 5 ~\mathrm{MeV} / \mathrm{c}^{2},

mass of 24D=400260×9315 MeV/c2]\left.{ }_{2}^{4} D=4 \cdot 00260 \times 931 \cdot 5 ~\mathrm{MeV} / \mathrm{c}^{2}\right]

Options:

A)

2.12 MeV

B)

4.25 MeV

C)

3.82 MeV

D)

5.9 MeV

Question 56

Under isothermal condition, the pressure of a gas is given by P=a V3\mathrm{P}=a \mathrm{~V}^{-3}, where aa is a constant and V\mathrm{V} is the volume of the gas. The bulk modulus at constant temperature is equal to

Options:

A)

P2\frac{P}{2}

B)

2 P

C)

3 P

D)

P

Question 57

Two trains 'A' and 'B' of length 'll' and '4l4 l' are travelling into a tunnel of length 'L\mathrm{L}' in parallel tracks from opposite directions with velocities 108 km/h108 \mathrm{~km} / \mathrm{h} and 72 km/h72 \mathrm{~km} / \mathrm{h}, respectively. If train 'A' takes 35 s35 \mathrm{~s} less time than train 'B' to cross the tunnel then. length 'LL' of tunnel is :

(Given L=60l\mathrm{L}=60 l )

Options:

A)

900 m

B)

1200 m

C)

1800 m

D)

2700 m

Question 58

Which of the following Maxwell's equation is valid for time varying conditions but not valid for static conditions :

Options:

A)

Edl=0\oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{d l}=0

B)

Bdl=μ0I\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I

C)

Edl=ϕBt\oint \vec{E} \cdot \overrightarrow{d l}=-\frac{\partial \phi_{B}}{\partial t}

D)

DdA=Q\oint \vec{D} \cdot \overrightarrow{d A}=Q

Question 59

Different combination of 3 resistors of equal resistance R\mathrm{R} are shown in the figures. The increasing order for power dissipation is:

JEE Main 2023 (Online) 13th April Morning Shift Physics - Current Electricity Question 45 English

Options:

A)

PB<PC<PD<PA\mathrm{P}_{\mathrm{B}}<\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}<\mathrm{P}_{\mathrm{A}}

B)

PC<PB<PA<PD\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{B}}<\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{D}}

C)

PC<PD<PA<PB\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}<\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{B}}

D)

PA<PB<PC<PD\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{B}}<\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}

Question 60

For the following circuit and given inputs A and B, choose the correct option for output 'YY'

JEE Main 2023 (Online) 13th April Morning Shift Physics - Semiconductor Question 21 English

Options:

A)

JEE Main 2023 (Online) 13th April Morning Shift Physics - Semiconductor Question 21 English Option 1

B)

JEE Main 2023 (Online) 13th April Morning Shift Physics - Semiconductor Question 21 English Option 2

C)

JEE Main 2023 (Online) 13th April Morning Shift Physics - Semiconductor Question 21 English Option 3

D)

JEE Main 2023 (Online) 13th April Morning Shift Physics - Semiconductor Question 21 English Option 4

Question 61

A body of mass (5±0.5) kg(5 \pm 0.5) ~\mathrm{kg} is moving with a velocity of (20±0.4) m/s(20 \pm 0.4) ~\mathrm{m} / \mathrm{s}. Its kinetic energy will be

Options:

A)

(1000±140) J(1000 \pm 140) ~\mathrm{J}

B)

(500±0.14) J(500 \pm 0.14) ~\mathrm{J}

C)

(1000±0.14) J(1000 \pm 0.14) ~\mathrm{J}

D)

(500±140) J(500 \pm 140) ~\mathrm{J}

Question 62

The ratio of powers of two motors is 3xx+1\frac{3 \sqrt{x}}{\sqrt{x}+1}, that are capable of raising 300 kg300 \mathrm{~kg} water in 5 minutes and 50 kg50 \mathrm{~kg} water in 2 minutes respectively from a well of 100 m100 \mathrm{~m} deep. The value of xx will be

Options:

A)

16

B)

4

C)

2

D)

2.4

Question 63

Two bodies are having kinetic energies in the ratio 16 : 9. If they have same linear momentum, the ratio of their masses respectively is :

Options:

A)

3:43: 4

B)

4:34: 3

C)

9:169: 16

D)

16:916: 9

Numerical TypeQuestion 64

When a resistance of 5 Ω5 ~\Omega is shunted with a moving coil galvanometer, it shows a full scale deflection for a current of 250 mA250 \mathrm{~mA}, however when 1050 Ω1050 ~\Omega resistance is connected with it in series, it gives full scale deflection for 25 volt. The resistance of galvanometer is ____________ Ω\Omega.

Numerical TypeQuestion 65

A fish rising vertically upward with a uniform velocity of 8 ms18 \mathrm{~ms}^{-1}, observes that a bird is diving vertically downward towards the fish with the velocity of 12 ms112 \mathrm{~ms}^{-1}. If the refractive index of water is 43\frac{4}{3}, then the actual velocity of the diving bird to pick the fish, will be __________ ms1\mathrm{ms}^{-1}.

Numerical TypeQuestion 66

The radius of 2nd 2^{\text {nd }} orbit of He+\mathrm{He}^{+} of Bohr's model is r1r_{1} and that of fourth orbit of Be3+\mathrm{Be}^{3+} is represented as r2r_{2}. Now the ratio r2r1\frac{r_{2}}{r_{1}} is x:1x: 1. The value of xx is ___________.

Numerical TypeQuestion 67

A potential V0\mathrm{V}_{0} is applied across a uniform wire of resistance RR. The power dissipation is P1P_{1}. The wire is then cut into two equal halves and a potential of V0V_{0} is applied across the length of each half. The total power dissipation across two wires is P2P_{2}. The ratio P2:P1P_{2}: \mathrm{P}_{1} is x:1\sqrt{x}: 1. The value of xx is ___________.

Numerical TypeQuestion 68

In the given figure, an inductor and a resistor are connected in series with a battery of emf E volt. Ea2b J/s\frac{E^{a}}{2 b} \mathrm{~J} / s represents the maximum rate at which the energy is stored in the magnetic field (inductor). The numerical value of ba\frac{b}{a} will be __________.

JEE Main 2023 (Online) 13th April Morning Shift Physics - Alternating Current Question 20 English

Numerical TypeQuestion 69

At a given point of time the value of displacement of a simple harmonic oscillator is given as y=Acos(30)\mathrm{y}=\mathrm{A} \cos \left(30^{\circ}\right). If amplitude is 40 cm40 \mathrm{~cm} and kinetic energy at that time is 200 J200 \mathrm{~J}, the value of force constant is 1.0×10x Nm11.0 \times 10^{x} ~\mathrm{Nm}^{-1}. The value of xx is ____________.

Numerical TypeQuestion 70

A thin infinite sheet charge and an infinite line charge of respective charge densities +σ+\sigma and +λ+\lambda are placed parallel at 5 m5 \mathrm{~m} distance from each other. Points 'P' and 'Q' are at 3π\frac{3}{\pi} m and 4π\frac{4}{\pi} m perpendicular distances from line charge towards sheet charge, respectively. 'EP\mathrm{E}_{\mathrm{P}}' and 'EQ\mathrm{E}_{\mathrm{Q}}' are the magnitudes of resultant electric field intensities at point 'P' and 'Q', respectively. If EpE0=4a\frac{E_{p}}{E_{0}}=\frac{4}{a} for 2σ=λ2|\sigma|=|\lambda|, then the value of aa is ___________.

Numerical TypeQuestion 71

A solid sphere is rolling on a horizontal plane without slipping. If the ratio of angular momentum about axis of rotation of the sphere to the total energy of moving sphere is π:22\pi: 22 then, the value of its angular speed will be ____________ rad/s\mathrm{rad} / \mathrm{s}.

Numerical TypeQuestion 72

The elastic potential energy stored in a steel wire of length 20 m20 \mathrm{~m} stretched through 2 cm2 \mathrm{~cm} is 80 J80 \mathrm{~J}. The cross sectional area of the wire is __________ mm2\mathrm{mm}^{2}.

(\left(\right. Given, y=2.0×1011Nm2)\left.y=2.0 \times 10^{11} \mathrm{Nm}^{-2}\right)