Jeehub Logo

Apr 11, 2023

JEE Mains

Shift: 1

Total Questions Available: 76

Question 1

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 20 English

'A' and 'B' in the above reactions are:

Options:

A)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 20 English Option 1

B)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 20 English Option 2

C)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 20 English Option 3

D)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 20 English Option 4

Question 2

The complex that dissolves in water is :

Options:

A)

Fe4[Fe(CN)6]3\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}

B)

(NH4)3[As(Mo3O10)4]\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{As}\left(\mathrm{Mo}_{3} \mathrm{O}_{10}\right)_{4}\right]

C)

K3[Co(NO2)6]\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]

D)

[Fe3(OH)2(OAc)6]Cl\left[\mathrm{Fe}_{3}(\mathrm{OH})_{2}(\mathrm{OAc})_{6}\right] \mathrm{Cl}

Question 3

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Haloalkanes and Haloarenes Question 21 English

Find out the correct statement from the options given below for the above 2 reactions.

Options:

A)

Reaction (I) is of 1st 1^{\text {st }} order and reaction (II) is of 2nd 2^{\text {nd }} order

B)

Reaction (I) is of 2nd 2^{\text {nd }} order and reaction (II) is of 1st 1^{\text {st }} order

C)

Reactions (I) and (II) both are of 2nd 2^{\text {nd }} order

D)

Reactions (I) and (II) both are of 1st 1^{\text {st }} order

Question 4

For elements B,C,N,Li,Be,O\mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{Li}, \mathrm{Be}, \mathrm{O} and F\mathrm{F}, the correct order of first ionization enthalpy is

Options:

A)

Li<Be<B<C<O<N<F\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}

B)

B>Li>Be>C>N>O>F\mathrm{B}>\mathrm{Li}>\mathrm{Be}>\mathrm{C}>\mathrm{N}>\mathrm{O}>\mathrm{F}

C)

Li<Be<B<C<N<O<F\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}

D)

Li<B<Be<C<O<N<F\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}

Question 5

For compound having the formula GaAlCl4\mathrm{GaAlCl}_{4}, the correct option from the following is :

Options:

A)

Cl\mathrm{Cl} forms bond with both Al\mathrm{Al} and Ga\mathrm{Ga} in GaAlCl4\mathrm{GaAlCl}_{4}

B)

Oxidation state of Ga\mathrm{Ga} in the salt GaAlCl4\mathrm{GaAlCl}_{4} is +3 .

C)

Ga\mathrm{Ga} is coordinated with Cl\mathrm{Cl} in GaAlCl4\mathrm{GaAlCl}_{4}

D)

Ga\mathrm{Ga} is more electronegative than Al\mathrm{Al} and is present as a cationic part of the salt GaAlCl4\mathrm{GaAlCl}_{4}

Question 6

Arrange the following compounds in increasing order of rate of aromatic electrophilic substitution reaction

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 18 English

Options:

A)

d, b, a, c

B)

b, c, a, d

C)

c, a, b, d

D)

d, b, c, a

Numerical TypeQuestion 7

0.004 M K2_2SO4_4 solution is isotonic with 0.01 M glucose solution. Percentage dissociation of K2_2SO4_4 is ___________ (Nearest integer)

Numerical TypeQuestion 8

KClO3+6FeSO4+3H2SO4KCl+3Fe2(SO4)3+3H2O\mathrm{KClO}_{3}+6 \mathrm{FeSO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KCl}+3 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}

The above reaction was studied at 300 K300 \mathrm{~K} by monitoring the concentration of FeSO4\mathrm{FeSO}_{4} in which initial concentration was 10M10 \mathrm{M} and after half an hour became 8.8 M. The rate of production of Fe2(SO4)3\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} is _________ ×106 mol L s1\times 10^{-6} \mathrm{~mol} \mathrm{~L} \mathrm{~s}^{-1} (Nearest integer)

Numerical TypeQuestion 9

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 20 English

The number of hyperconjugation structures involved to stabilize carbocation formed in the above reaction is _________.

Numerical TypeQuestion 10

In an electrochemical reaction of lead, at standard temperature, if E0( Pb2+/Pb)=m\mathrm{E}^{0}\left(\mathrm{~Pb}^{2+} / \mathrm{Pb}\right)=\mathrm{m} Volt and E0( Pb4+/Pb)=n\mathrm{E}^{0}\left(\mathrm{~Pb}^{4+} / \mathrm{Pb}\right)=\mathrm{n} Volt, then the value of E0( Pb2+/Pb4+)\mathrm{E}^{0}\left(\mathrm{~Pb}^{2+} / \mathrm{Pb}^{4+}\right) is given by mxn\mathrm{m-x n}. The value of x\mathrm{x} is ___________. (Nearest integer)

Question 11

Let R be a rectangle given by the lines x=0,x=2,y=0x=0, x=2, y=0 and y=5y=5. Let A(α,0)(\alpha,0) and B(0,β),α[0,2](0,\beta),\alpha\in[0,2] and β[0,5]\beta\in[0,5], be such that the line segment AB divides the area of the rectangle R in the ratio 4 : 1. Then, the mid-point of AB lies on a :

Options:

A)

hyperbola

B)

straight line

C)

parabola

D)

circle

Question 12

Let w1w_{1} be the point obtained by the rotation of z1=5+4iz_{1}=5+4 i about the origin through a right angle in the anticlockwise direction, and w2w_{2} be the point obtained by the rotation of z2=3+5iz_{2}=3+5 i about the origin through a right angle in the clockwise direction. Then the principal argument of w1w2w_{1}-w_{2} is equal to :

Options:

A)

π+tan189-\pi+\tan ^{-1} \frac{8}{9}

B)

π+tan1335-\pi+\tan ^{-1} \frac{33}{5}

C)

πtan189\pi-\tan ^{-1} \frac{8}{9}

D)

πtan1335\pi-\tan ^{-1} \frac{33}{5}

Question 13

Let y=y(x)y=y(x) be a solution curve of the differential equation.

(1x2y2)dx=ydx+xdy\left(1-x^{2} y^{2}\right) d x=y d x+x d y.

If the line x=1x=1 intersects the curve y=y(x)y=y(x) at y=2y=2 and the line x=2x=2 intersects the curve y=y(x)y=y(x) at y=αy=\alpha, then a value of α\alpha is :

Options:

A)

1+3e22(3e21)\frac{1+3 e^{2}}{2\left(3 e^{2}-1\right)}

B)

3e22(3e21)\frac{3 e^{2}}{2\left(3 e^{2}-1\right)}

C)

13e22(3e2+1)\frac{1-3 e^{2}}{2\left(3 e^{2}+1\right)}

D)

3e22(3e2+1)\frac{3 e^{2}}{2\left(3 e^{2}+1\right)}

Question 14

For any vector a=a1i^+a2j^+a3k^\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, with 10ai<1,i=1,2,310\left|a_{i}\right|<1, i=1,2,3, consider the following statements :

(A): max{a1,a2,a3}a\max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\} \leq|\vec{a}|

(B) : a3max{a1,a2,a3}|\vec{a}| \leq 3 \max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\}

Options:

A)

Only (B) is true

B)

Only (A) is true

C)

Neither (A) nor (B) is true

D)

Both (A) and (B) are true

Question 15

Consider ellipses Ek:kx2+k2y2=1,k=1,2,,20\mathrm{E}_{k}: k x^{2}+k^{2} y^{2}=1, k=1,2, \ldots, 20. Let Ck\mathrm{C}_{k} be the circle which touches the four chords joining the end points (one on minor axis and another on major axis) of the ellipse Ek\mathrm{E}_{k}. If rkr_{k} is the radius of the circle Ck\mathrm{C}_{k}, then the value of \sum_\limits{k=1}^{20} \frac{1}{r_{k}^{2}} is :

Options:

A)

2870

B)

3210

C)

3320

D)

3080

Numerical TypeQuestion 16

Let A=[012a031c0]A=\left[\begin{array}{lll}0 & 1 & 2 \\ a & 0 & 3 \\ 1 & c & 0\end{array}\right], where a,cRa, c \in \mathbb{R}. If A3=AA^{3}=A and the positive value of aa belongs to the interval (n1,n](n-1, n], where nNn \in \mathbb{N}, then nn is equal to ___________.

Numerical TypeQuestion 17

Let Hn:x21+ny23+n=1,nN\mathrm{H}_{\mathrm{n}}: \frac{x^{2}}{1+n}-\frac{y^{2}}{3+n}=1, n \in N. Let k\mathrm{k} be the smallest even value of n\mathrm{n} such that the eccentricity of Hk\mathrm{H}_{\mathrm{k}} is a rational number. If ll is the length of the latus rectum of Hk\mathrm{H}_{\mathrm{k}}, then 21l21 l is equal to ____________.

Numerical TypeQuestion 18

Let a line ll pass through the origin and be perpendicular to the lines

l1:r=(ı^11ȷ^7k^)+λ(i^+2ȷ^+3k^),λRl_{1}: \vec{r}=(\hat{\imath}-11 \hat{\jmath}-7 \hat{k})+\lambda(\hat{i}+2 \hat{\jmath}+3 \hat{k}), \lambda \in \mathbb{R} and

l2:r=(ı^+k^)+μ(2ı^+2ȷ^+k^),μRl_{2}: \vec{r}=(-\hat{\imath}+\hat{\mathrm{k}})+\mu(2 \hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}}), \mu \in \mathbb{R}.

If P\mathrm{P} is the point of intersection of ll and l1l_{1}, and Q(,β,γ)\mathrm{Q}(\propto, \beta, \gamma) is the foot of perpendicular from P on l2l_{2}, then 9(α+β+γ)9(\alpha+\beta+\gamma) is equal to _____________.

Numerical TypeQuestion 19

The mean of the coefficients of x,x2,,x7x, x^{2}, \ldots, x^{7} in the binomial expansion of (2+x)9(2+x)^{9} is ___________.

Question 20

On a temperature scale 'X\mathrm{X}', the boiling point of water is 65X65^{\circ} \mathrm{X} and the freezing point is 15X-15^{\circ} \mathrm{X}. Assume that the X\mathrm{X} scale is linear. The equivalent temperature corresponding to 95X-95^{\circ} \mathrm{X} on the Farenheit scale would be:

Options:

A)

148F-148^{\circ} \mathrm{F}

B)

48F-48^{\circ} \mathrm{F}

C)

63F-63^{\circ} \mathrm{F}

D)

112F-112^{\circ} \mathrm{F}

Question 21

The radii of two planets 'A' and 'B' are 'R' and '4R' and their densities are ρ\rho and ρ/3\rho / 3 respectively. The ratio of acceleration due to gravity at their surfaces (gA:gB)\left(g_{A}: g_{B}\right) will be:

Options:

A)

3 : 16

B)

4 : 3

C)

1 : 16

D)

3 : 4

Question 22

The logic performed by the circuit shown in figure is equivalent to :

JEE Main 2023 (Online) 11th April Morning Shift Physics - Semiconductor Question 18 English

Options:

A)

NAND

B)

AND

C)

OR

D)

NOR

Question 23

The electric field in an electromagnetic wave is given as

E=20sinω(txc)jNC1\overrightarrow{\mathrm{E}}=20 \sin \omega\left(\mathrm{t}-\frac{x}{\mathrm{c}}\right) \overrightarrow{\mathrm{j}} \mathrm{NC}^{-1}

where ω\omega and cc are angular frequency and velocity of electromagnetic wave respectively. The energy contained in a volume of 5×104 m35 \times 10^{-4} \mathrm{~m}^{3} will be

(Given ε0=8.85×1012C2/Nm2\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2} )

Options:

A)

177×1013 J17 \cdot 7 \times 10^{-13} \mathrm{~J}

B)

285×1013 J28 \cdot 5 \times 10^{-13} \mathrm{~J}

C)

885×1013 J8 \cdot 85 \times 10^{-13} \mathrm{~J}

D)

885×1013 J88 \cdot 5 \times 10^{-13} \mathrm{~J}

Question 24

JEE Main 2023 (Online) 11th April Morning Shift Physics - Alternating Current Question 17 English

As per the given graph, choose the correct representation for curve A\mathrm{A} and curve B.

Where XC=\mathrm{X}_{\mathrm{C}}= reactance of pure capacitive circuit connected with A.C. source

XL=\mathrm{X}_{\mathrm{L}}= reactance of pure inductive circuit connected with A.C\mathrm{A} . \mathrm{C}. source

R = impedance of pure resistive circuit connected with A.C. source.

Z=\mathrm{Z}= Impedance of the LCR series circuit }\}

Options:

A)

A=XL,B=R\mathrm{A}=\mathrm{X}_{\mathrm{L}}, \mathrm{B}=\mathrm{R}

B)

A=XL, B=Z\mathrm{A}=\mathrm{X}_{L}, \mathrm{~B}=Z

C)

A=XC,B=XL\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{X}_{\mathrm{L}}

D)

A=XC,B=R\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{R}

Numerical TypeQuestion 25

The equation of wave is given by

Y=102sin2π(160t0.5x+π/4)\mathrm{Y}=10^{-2} \sin 2 \pi(160 t-0.5 x+\pi / 4)

where xx and YY are in m\mathrm{m} and t\mathrm{t} in ss. The speed of the wave is ________ km h1\mathrm{km} ~\mathrm{h}^{-1}.

Question 26

Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R :

Assertion A : In the photoelectric effect, the electrons are ejected from the metal surface as soon as the beam of light of frequency greater than threshold frequency strikes the surface.

Reason R : When the photon of any energy strikes an electron in the atom, transfer of energy from the photon to the electron takes place.

In the light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Both A and R are correct and R is the correct explanation of A

B)

A is not correct but R is correct

C)

A is correct but R is not correct

D)

Both A and R are correct but R is NOT the correct explanation of A

Question 27

25 mL25 \mathrm{~mL} of silver nitrate solution (1M) is added dropwise to 25 mL25 \mathrm{~mL} of potassium iodide (1.05M)(1.05 \mathrm{M}) solution. The ion(s) present in very small quantity in the solution is/are :

Options:

A)

I\mathrm{I^-} only

B)

K+\mathrm{K^+} only

C)

Ag+\mathrm{Ag^+} and I\mathrm{I^-} both

D)

NO3\mathrm{NO_3^-} only

Question 28

When a solution of mixture having two inorganic salts was treated with freshly prepared ferrous sulphate in acidic medium, a dark brown ring was formed whereas on treatment with neutral FeCl3\mathrm{FeCl}_{3}, it gave deep red colour which disppeared on boiling and a brown red ppt was formed. The mixture contains :

Options:

A)

SO32_3^{2-} & C2_2O42_4^{2-}

B)

CH3COO& NO3\mathrm{CH}_{3} \mathrm{COO}^{-} \& ~\mathrm{NO}_{3}^{-}

C)

C2O42& NO3\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \& ~\mathrm{NO}_{3}^{-}

D)

SO32& CH3COO\mathrm{SO}_{3}^{2-} \& ~\mathrm{CH}_{3} \mathrm{COO}^{-}

Question 29

Thin layer chromatography of a mixture shows the following observation:

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Basics of Organic Chemistry Question 40 English

The correct order of elution in the silica gel column chromatography is

Options:

A)

B, A, C

B)

C, A, B

C)

A, C, B

D)

B, C, A

Question 30

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Compounds Containing Nitrogen Question 22 English

'X' is

Options:

A)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Compounds Containing Nitrogen Question 22 English Option 1

B)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Compounds Containing Nitrogen Question 22 English Option 2

C)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Compounds Containing Nitrogen Question 22 English Option 3

D)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Compounds Containing Nitrogen Question 22 English Option 4

Question 31

The set which does not have ambidentate ligand(s) is :

Options:

A)

C2O42,NO2,NCS\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{NCS}^{-}

B)

C2O42\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}, ethylene diammine, H2O\mathrm{H}_{2} \mathrm{O}

C)

NO2,C2O42\mathrm{NO}_{2}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}, EDTA 4^{4-}

D)

EDTA4,NCS,C2O42\mathrm{EDTA}^{4-}, \mathrm{NCS}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}

Numerical TypeQuestion 32

The ratio of spin-only magnetic moment values μeff [Cr(CN)6]3/μeff [Cr(H2O)6]3+\mu_{\text {eff }}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-} / \mu_{\text {eff }}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} is _________.

Numerical TypeQuestion 33

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 19 English

The ratio x/y on completion of the above reaction is __________.

Numerical TypeQuestion 34

Solid fuel used in rocket is a mixture of Fe2O3\mathrm{Fe}_{2} \mathrm{O}_{3} and Al\mathrm{Al} (in ratio 1 : 2). The heat evolved (kJ)(\mathrm{kJ}) per gram of the mixture is ____________. (Nearest integer)

Given: ΔHfθ(Al2O3)=1700 kJ mol1\Delta \mathrm{H}_{\mathrm{f}}^{\theta}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=-1700 \mathrm{~kJ} \mathrm{~mol}^{-1}

ΔHfθ(Fe2O3)=840 kJ mol1\Delta \mathrm{H}_{\mathrm{f}}^{\theta}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=-840 \mathrm{~kJ} \mathrm{~mol}^{-1}

Molar mass of Fe, Al and O are 56, 27 and 16 g mol1^{-1} respectively.

Question 35

Let sets A and B have 5 elements each. Let the mean of the elements in sets A and B be 5 and 8 respectively and the variance of the elements in sets A and B be 12 and 20 respectively. A new set C of 10 elements is formed by subtracting 3 from each element of A\mathrm{A} and adding 2 to each element of B\mathrm{B}. Then the sum of the mean and variance of the elements of C\mathrm{C} is ___________.

Options:

A)

36

B)

40

C)

38

D)

32

Question 36

Area of the region {(x,y):x2+(y2)24,x22y}\left\{(x, y): x^{2}+(y-2)^{2} \leq 4, x^{2} \geq 2 y\right\} is

Options:

A)

2π+1632 \pi+\frac{16}{3}

B)

π83\pi-\frac{8}{3}

C)

π+83\pi+\frac{8}{3}

D)

2π1632 \pi-\frac{16}{3}

Question 37

The number of triplets (x,y,z)(x, \mathrm{y}, \mathrm{z}), where x,y,zx, \mathrm{y}, \mathrm{z} are distinct non negative integers satisfying x+y+z=15x+y+z=15, is :

Options:

A)

136

B)

80

C)

92

D)

114

Question 38

An organization awarded 48 medals in event 'A', 25 in event 'B' and 18 in event 'C'. If these medals went to total 60 men and only five men got medals in all the three events, then, how many received medals in exactly two of three events?

Options:

A)

10

B)

15

C)

21

D)

9

Numerical TypeQuestion 39

In an examination, 5 students have been allotted their seats as per their roll numbers. The number of ways, in which none of the students sits on the allotted seat, is _________.

Numerical TypeQuestion 40

If aa and bb are the roots of the equation x27x1=0x^{2}-7 x-1=0, then the value of a21+b21+a17+b17a19+b19\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}} is equal to _____________.

Question 41

The critical angle for a denser-rarer interface is 4545^{\circ}. The speed of light in rarer medium is 3×108 m/s3 \times 10^{8} \mathrm{~m} / \mathrm{s}. The speed of light in the denser medium is:

Options:

A)

2.12×108 m/s2 .12 \times 10^{8} \mathrm{~m} / \mathrm{s}

B)

5×107 m/s5 \times 10^{7} \mathrm{~m} / \mathrm{s}

C)

2×108 m/s\sqrt{2} \times 10^{8} \mathrm{~m} / \mathrm{s}

D)

3.12×107 m/s3.12 \times 10^{7} \mathrm{~m} / \mathrm{s}

Question 42

A metallic surface is illuminated with radiation of wavelength λ\lambda, the stopping potential is V0V_{0}. If the same surface is illuminated with radiation of wavelength 2λ2 \lambda. the stopping potential becomes Vo4\frac{V_{o}}{4}. The threshold wavelength for this metallic surface will be

Options:

A)

3λ3 \lambda

B)

4λ4 \lambda

C)

32λ\frac{3}{2} \lambda

D)

λ4\frac{\lambda}{4}

Question 43

From the vt\mathrm{v}-t graph shown, the ratio of distance to displacement in 25 s25 \mathrm{~s} of motion is:

JEE Main 2023 (Online) 11th April Morning Shift Physics - Motion Question 23 English

Options:

A)

1

B)

35\frac{3}{5}

C)

12\frac{1}{2}

D)

53\frac{5}{3}

Question 44

Match List - I with List - II:

List - I Species List - II Geometry/Shape
A. H3O+\mathrm{H_3O^+} I. Tetrahedral
B. Acetylide anion II. Linear
C. NH4+\mathrm{NH_4^+} III. Pyramidal
D. ClO2\mathrm{ClO_2^-} IV. Bent

Choose the correct answer from the options given below:

Options:

A)

A-III, B-I, C-II, D-IV

B)

A-III, B-II, C-I, D-IV

C)

A-III, B-IV, C-I, D-II

D)

A-III, B-IV, C-II, D-I

Question 45

L-isomer of tetrose X(C4H8O4)\mathrm{X}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}\right) gives positive Schiff's test and has two chiral carbons. On acetylation, 'X\mathrm{X}' yields triacetate. 'X\mathrm{X}' also undergoes following reactions

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Biomolecules Question 17 English

'X\mathrm{X}' is

Options:

A)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Biomolecules Question 17 English Option 1

B)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Biomolecules Question 17 English Option 2

C)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Biomolecules Question 17 English Option 3

D)

JEE Main 2023 (Online) 11th April Morning Shift Chemistry - Biomolecules Question 17 English Option 4

Question 46

Which of the following complex has a possibility to exist as meridional isomer?

Options:

A)

[Pt(NH3)2Cl2]\mathrm{[Pt(NH_3)_2Cl_2]}

B)

[Co(en)2Cl2]\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]

C)

[Co(en)3]\left[\mathrm{Co}(\mathrm{en})_{3}\right]

D)

[Co(NH3)3(NO2)3]\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]

Numerical TypeQuestion 47

A mixture of 1 mole of H2O\mathrm{H}_{2} \mathrm{O} and 1 mole of CO\mathrm{CO} is taken in a 10 litre container and heated to 725 K725 \mathrm{~K}. At equilibrium 40%40 \% of water by mass reacts with carbon monoxide according to the equation :

CO(g)+H2O(g)CO2( g)+H2( g)\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}).

The equilibrium constant Kc×102\mathrm{K}_{\mathrm{c}} \times 10^{2} for the reaction is ____________. (Nearest integer)

Question 48

Let S={M=[aij],aij{0,1,2},1i,j2}S=\left\{M=\left[a_{i j}\right], a_{i j} \in\{0,1,2\}, 1 \leq i, j \leq 2\right\} be a sample space and A={MS:MA=\{M \in S: M is invertible }\} be an event. Then P(A)P(A) is equal to :

Options:

A)

4781\frac{47}{81}

B)

4981\frac{49}{81}

C)

5081\frac{50}{81}

D)

1627\frac{16}{27}

Question 49

The value of the integral \int_\limits{-\log _{e} 2}^{\log _{e} 2} e^{x}\left(\log _{e}\left(e^{x}+\sqrt{1+e^{2 x}}\right)\right) d x is equal to :

Options:

A)

loge((2+5)21+5)+52\log _{e}\left(\frac{(2+\sqrt{5})^{2}}{\sqrt{1+\sqrt{5}}}\right)+\frac{\sqrt{5}}{2}

B)

loge(2(2+5)21+5)52\log _{e}\left(\frac{\sqrt{2}(2+\sqrt{5})^{2}}{\sqrt{1+\sqrt{5}}}\right)-\frac{\sqrt{5}}{2}

C)

loge(2(2+5)1+5)52\log _{e}\left(\frac{2(2+\sqrt{5})}{\sqrt{1+\sqrt{5}}}\right)-\frac{\sqrt{5}}{2}

D)

loge(2(35)21+5)+52\log _{e}\left(\frac{\sqrt{2}(3-\sqrt{5})^{2}}{\sqrt{1+\sqrt{5}}}\right)+\frac{\sqrt{5}}{2}

Question 50

Let A\mathrm{A} be a 2×22 \times 2 matrix with real entries such that A=αA+I\mathrm{A}'=\alpha \mathrm{A}+\mathrm{I}, where αR{1,1}\alpha \in \mathbb{R}-\{-1,1\}. If det(A2A)=4\operatorname{det}\left(A^{2}-A\right)=4, then the sum of all possible values of α\alpha is equal to :

Options:

A)

2

B)

32\frac{3}{2}

C)

0

D)

52\frac{5}{2}

Question 51

Let a\vec{a} be a non-zero vector parallel to the line of intersection of the two planes described by i^+j^,i^+k^\hat{i}+\hat{j}, \hat{i}+\hat{k} and i^j^,j^k^\hat{i}-\hat{j}, \hat{j}-\hat{k}. If θ\theta is the angle between the vector a\vec{a} and the vector b=2i^2j^+k^\vec{b}=2 \hat{i}-2 \hat{j}+\hat{k} and ab=6\vec{a} \cdot \vec{b}=6, then the ordered pair (θ,a×b)(\theta,|\vec{a} \times \vec{b}|) is equal to :

Options:

A)

(π3,36)\left(\frac{\pi}{3}, 3 \sqrt{6}\right)

B)

(π3,6)\left(\frac{\pi}{3}, 6\right)

C)

(π4,36)\left(\frac{\pi}{4}, 3 \sqrt{6}\right)

D)

(π4,6)\left(\frac{\pi}{4}, 6\right)

Numerical TypeQuestion 52

For m,n>0m, n > 0, let \alpha(m, n)=\int_\limits{0}^{2} t^{m}(1+3 t)^{n} d t. If 11α(10,6)+18α(11,5)=p(14)611 \alpha(10,6)+18 \alpha(11,5)=p(14)^{6}, then pp is equal to ___________.

Question 53

Given below are two statements :

Statements I : Astronomical unit (Au), Parsec (Pc) and Light year (ly) are units for measuring astronomical distances.

Statements II : Au<Parsec(Pc)<ly\mathrm{Au} < \mathrm{Parsec} (\mathrm{Pc}) < \mathrm{ly}

In the light of the above statements, choose the most appropriate answer from the options given below:

Options:

A)

Both Statements I and Statements II are incorrect.

B)

Both Statements I and Statements II are correct,

C)

Statements I is incorrect but Statements II is correct.

D)

Statements I is correct but Statements II is incorrect.

Question 54

Three vessels of equal volume contain gases at the same temperature and pressure. The first vessel contains neon (monoatomic), the second contains chlorine (diatomic) and third contains uranium hexafloride (polyatomic). Arrange these on the basis of their root mean square speed (vrms)\left(v_{\mathrm{rms}}\right) and choose the correct answer from the options given below:

Options:

A)

vrms(\mathrm{v}_{\mathrm{rms}}( mono )=vrms()=\mathrm{v}_{\mathrm{rms}}( dia )=vrms()=\mathrm{v}_{\mathrm{rms}}( poly ))

B)

vrms\mathrm{v}_{\mathrm{rms}} (mono) >vrms( > \mathrm{v}_{\mathrm{rms}}( dia )>vrms) > \mathrm{v}_{\mathrm{rms}} (poly)

C)

vrms\mathrm{v}_{\mathrm{rms}} (dia) <vrms < \mathrm{v}_{\mathrm{rms}} (poly) <vrms  < \mathrm{v}_{\text {rms }} (mono)

D)

vrms\mathrm{v}_{\mathrm{rms}} (mono) <vrms < \mathrm{v}_{\mathrm{rms}} (dia) <vrms < \mathrm{v}_{\mathrm{rms}} (poly)

Question 55

A coin placed on a rotating table just slips when it is placed at a distance of 1 cm1 \mathrm{~cm} from the center. If the angular velocity of the table in halved, it will just slip when placed at a distance of _________ from the centre :

Options:

A)

1 cm

B)

8 cm

C)

4 cm

D)

2 cm

Question 56

A parallel plate capacitor of capacitance 2 F2 \mathrm{~F} is charged to a potential V\mathrm{V}, The energy stored in the capacitor is E1E_{1}. The capacitor is now connected to another uncharged identical capacitor in parallel combination. The energy stored in the combination is E2\mathrm{E}_{2}. The ratio E2/E1\mathrm{E}_{2} / \mathrm{E}_{1} is :

Options:

A)

1 : 2

B)

2 : 3

C)

2 : 1

D)

1 : 4

Question 57

An average force of 125 N125 \mathrm{~N} is applied on a machine gun firing bullets each of mass 10 g10 \mathrm{~g} at the speed of 250 m/s250 \mathrm{~m} / \mathrm{s} to keep it in position. The number of bullets fired per second by the machine gun is :

Options:

A)

25

B)

50

C)

5

D)

100

Question 58

The free space inside a current carrying toroid is filled with a material of susceptibility 2×1022 \times 10^{-2}. The percentage increase in the value of magnetic field inside the toroid will be

Options:

A)

0.1%

B)

1%

C)

2%

D)

0.2%

Question 59

Two identical heater filaments are connected first in parallel and then in series. At the same applied voltage, the ratio of heat produced in same time for parallel to series will be:

Options:

A)

4 : 1

B)

1 : 4

C)

2 : 1

D)

1 : 2

Question 60

The current sensitivity of moving coil galvanometer is increased by 25%25 \%. This increase is achieved only by changing in the number of turns of coils and area of cross section of the wire while keeping the resistance of galvanometer coil constant. The percentage change in the voltage sensitivity will be:

Options:

A)

+25%

B)

-50%

C)

-25%

D)

Zero

Numerical TypeQuestion 61

A solution of sugar is obtained by mixing 200 g200 \mathrm{~g} of its 25%25 \% solution and 500 g500 \mathrm{~g} of its 40%40 \% solution (both by mass). The mass percentage of the resulting sugar solution is ___________ (Nearest integer)

Question 62

Let x1,x2,,x100x_{1}, x_{2}, \ldots, x_{100} be in an arithmetic progression, with x1=2x_{1}=2 and their mean equal to 200 . If yi=i(xii),1i100y_{i}=i\left(x_{i}-i\right), 1 \leq i \leq 100, then the mean of y1,y2,,y100y_{1}, y_{2}, \ldots, y_{100} is :

Options:

A)

10051.50

B)

10049.50

C)

10100

D)

10101.50

Question 63

Let f(x)=[x2x]+x+[x]f(x)=\left[x^{2}-x\right]+|-x+[x]|, where xRx \in \mathbb{R} and [t][t] denotes the greatest integer less than or equal to tt. Then, ff is :

Options:

A)

continuous at x=0x=0, but not continuous at x=1x=1

B)

continuous at x=0x=0 and x=1x=1

C)

continuous at x=1x=1, but not continuous at x=0x=0

D)

not continuous at x=0x=0 and x=1x=1

Question 64

The number of integral solutions xx of log(x+72)(x72x3)20\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^{2} \geq 0 is :

Options:

A)

8

B)

7

C)

5

D)

6

Numerical TypeQuestion 65

The number of integral terms in the expansion of (312+514)680\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680} is equal to ___________.

Question 66

1 kg1 \mathrm{~kg} of water at 100C100^{\circ} \mathrm{C} is converted into steam at 100C100^{\circ} \mathrm{C} by boiling at atmospheric pressure. The volume of water changes from 1.00×103 m31.00 \times 10^{-3} \mathrm{~m}^{3} as a liquid to 1.671 m31.671 \mathrm{~m}^{3} as steam. The change in internal energy of the system during the process will be

(Given latent heat of vaporisaiton =2257 kJ/kg=2257 \mathrm{~kJ} / \mathrm{kg}, Atmospheric pressure = 1×105 Pa)\left.1 \times 10^{5} \mathrm{~Pa}\right)

Options:

A)

+ 2090 kJ

B)

- 2426 kJ

C)

+ 2476 kJ

D)

- 2090 kJ

Question 67

The variation of kinetic energy (KE) of a particle executing simple harmonic motion with the displacement (x)(x) starting from mean position to extreme position (A) is given by

Options:

A)

JEE Main 2023 (Online) 11th April Morning Shift Physics - Simple Harmonic Motion Question 15 English Option 1

B)

JEE Main 2023 (Online) 11th April Morning Shift Physics - Simple Harmonic Motion Question 15 English Option 2

C)

JEE Main 2023 (Online) 11th April Morning Shift Physics - Simple Harmonic Motion Question 15 English Option 3

D)

JEE Main 2023 (Online) 11th April Morning Shift Physics - Simple Harmonic Motion Question 15 English Option 4

Numerical TypeQuestion 68

In the circuit diagram shown in figure given below, the current flowing through resistance 3 Ω3 ~\Omega is x3A\frac{x}{3} A.

The value of xx is ___________

JEE Main 2023 (Online) 11th April Morning Shift Physics - Current Electricity Question 36 English

Numerical TypeQuestion 69

The magnetic field B crossing normally a square metallic plate of area 4 m24 \mathrm{~m}^{2} is changing with time as shown in figure. The magnitude of induced emf in the plate during t=2s\mathrm{t}=2 s to t=4s\mathrm{t}=4 s, is __________ mV\mathrm{mV}.

JEE Main 2023 (Online) 11th April Morning Shift Physics - Electromagnetic Induction Question 21 English

Numerical TypeQuestion 70

As shown in the figure, a configuration of two equal point charges (q0=+2μC)\left(q_{0}=+2 \mu \mathrm{C}\right) is placed on an inclined plane. Mass of each point charge is 20 g20 \mathrm{~g}. Assume that there is no friction between charge and plane. For the system of two point charges to be in equilibrium (at rest) the height h=x×103 m\mathrm{h}=x \times 10^{-3} \mathrm{~m}.

The value of xx is ____________.

(Take 14πε0=9×109 N m2C2,g=10 m s2\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}, g=10 \mathrm{~m} \mathrm{~s}^{-2} )

JEE Main 2023 (Online) 11th April Morning Shift Physics - Electrostatics Question 26 English

Numerical TypeQuestion 71

A projectile fired at 3030^{\circ} to the ground is observed to be at same height at time 3 s3 \mathrm{~s} and 5 s5 \mathrm{~s} after projection, during its flight. The speed of projection of the projectile is ___________ m s1\mathrm{m} ~\mathrm{s}^{-1}.

(Given g=10 ms2g=10 \mathrm{~ms}^{-2} )

Numerical TypeQuestion 72

A force F=(2+3x)i^\vec{F}=(2+3 x) \hat{i} acts on a particle in the xx direction where F is in newton and xx is in meter. The work done by this force during a displacement from x=0x=0 to x=4 mx=4 \mathrm{~m}, is __________ J.

Numerical TypeQuestion 73

A solid sphere of mass 500 g500 \mathrm{~g} and radius 5 cm5 \mathrm{~cm} is rotated about one of its diameter with angular speed of 10 rad s110 ~\mathrm{rad} ~\mathrm{s}^{-1}. If the moment of inertia of the sphere about its tangent is x×102x \times 10^{-2} times its angular momentum about the diameter. Then the value of xx will be ___________.

Numerical TypeQuestion 74

The length of a wire becomes l1l_{1} and l2l_{2} when 100 N100 \mathrm{~N} and 120 N120 \mathrm{~N} tensions are applied respectively. If 10 l2=11 l110 ~l_{2}=11~ l_{1}, the natural length of wire will be 1x l1\frac{1}{x} ~l_{1}. Here the value of xx is _____________.

Numerical TypeQuestion 75

The radius of curvature of each surface of a convex lens having refractive index 1.8 is 20 cm20 \mathrm{~cm}. The lens is now immersed in a liquid of refractive index 1.5 . The ratio of power of lens in air to its power in the liquid will be x:1x: 1. The value of xx is _________.

Numerical TypeQuestion 76

A monochromatic light is incident on a hydrogen sample in ground state. Hydrogen atoms absorb a fraction of light and subsequently emit radiation of six different wavelengths. The frequency of incident light is x×1015 Hzx \times 10^{15} \mathrm{~Hz}. The value of xx is ____________.

(Given h =4.25×1015 eVs=4.25 \times 10^{-15} ~\mathrm{eVs} )