Jeehub Logo

Apr 8, 2023

JEE Mains

Shift: 2

Total Questions Available: 66

Question 1

Henry Moseley studied characteristic X-ray spectra of elements. The graph which represents his observation correctly is

Given v=v= frequency of X\mathrm{X}-ray emitted

Z = atomic number

Options:

A)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Structure of Atom Question 15 English Option 1

B)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Structure of Atom Question 15 English Option 2

C)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Structure of Atom Question 15 English Option 3

D)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Structure of Atom Question 15 English Option 4

Question 2

Given below are two statements:

Statement I : In redox titration, the indicators used are sensitive to change in pH\mathrm{pH} of the solution.

Statement II : In acid-base titration, the indicators used are sensitive to change in oxidation potential.

In the light of the above statements, choose the most appropriate answer from the options given below

Options:

A)

Both Statement I and Statement II are incorrect

B)

Statement I is correct but Statement II is incorrect

C)

Statement I is incorrect but Statement II is correct

D)

Both Statement I and Statement II are correct

Question 3

For a good quality cement, the ratio of lime to the total of the oxides of Si,Al\mathrm{Si}, \mathrm{Al} and Fe\mathrm{Fe} should be as close as to :

Options:

A)

3

B)

2

C)

1

D)

4

Question 4

The correct order of reactivity of following haloarenes towards nucleophilic substitution with aqueous NaOH\mathrm{NaOH} is :

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Haloalkanes and Haloarenes Question 18 English

Choose the correct answer from the options given below:

Options:

A)

C>A>D>B\mathrm{C}>\mathrm{A}>\mathrm{D}>\mathrm{B}

B)

D>B>A>C\mathrm{D}>\mathrm{B}>\mathrm{A}>\mathrm{C}

C)

A>B>D>C\mathrm{A}>\mathrm{B}>\mathrm{D}>\mathrm{C}

D)

D>C>B>A\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}

Question 5

The correct reaction profile diagram for a positive catalyst reaction.

Options:

A)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Chemical Kinetics and Nuclear Chemistry Question 13 English Option 1

B)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Chemical Kinetics and Nuclear Chemistry Question 13 English Option 2

C)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Chemical Kinetics and Nuclear Chemistry Question 13 English Option 3

D)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Chemical Kinetics and Nuclear Chemistry Question 13 English Option 4

Question 6

Match List I with List II

LIST I
Natural amino acid
LIST II
One letter code
A. Glutamic acid I. Q
B. Glutamine II. W
C. Tyrosine III. E
D. Tryptophan IV. Y

Choose the correct answer from the options given below:

Options:

A)

A-III, B-IV, C-I, D-II

B)

A-IV, B-III, C-I, D-II

C)

A-II, B-I, C-IV, D-III

D)

A-III, B-I, C-IV, D-II

Question 7

The descending order of acidity for the following carboxylic acid is-

A. CH3COOH\mathrm{CH}_{3} \mathrm{COOH}

B. F3CCOOH\mathrm{F}_{3} \mathrm{C}-\mathrm{COOH}

C. ClCH2COOH\mathrm{ClCH}_{2}-\mathrm{COOH}

D. FCH2COOH\mathrm{FCH}_{2}-\mathrm{COOH}

E. BrCH2COOH\mathrm{BrCH}_{2}-\mathrm{COOH}

Choose the correct answer from the options given below:

Options:

A)

B > C > D > E > A

B)

D > B > A > E > C

C)

B > D > C > E > A

D)

E > D > B > A > C

Numerical TypeQuestion 8

The number of species from the following carrying a single lone pair on central atom Xenon is ___________.

XeF5+,XeO3,XeO2 F2,XeF5,XeO3 F2,XeOF4,XeF4\mathrm{XeF}_{5}^{+}, \mathrm{XeO}_{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{XeF}_{5}^{-}, \mathrm{XeO}_{3} \mathrm{~F}_{2}, \mathrm{XeOF}_{4}, \mathrm{XeF}_{4}

Numerical TypeQuestion 9

For complete combustion of ethene.

C2H4(g)+3O2(g)2CO2(g)+2H2O(l)\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})

the amount of heat produced as measured in bomb calorimeter is 1406 kJ mol11406 \mathrm{~kJ} \mathrm{~mol}^{-1} at 300 K300 \mathrm{~K}. The minimum value of TΔS\mathrm{T} \Delta \mathrm{S} needed to reach equilibrium is (-) _________ kJ\mathrm{kJ}. (Nearest integer)

Given : R=8.3 J K1 mol1\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}

Question 10

The area of the quadrilateral ABCD\mathrm{ABCD} with vertices A(2,1,1),B(1,2,5),C(2,3,5)\mathrm{A}(2,1,1), \mathrm{B}(1,2,5), \mathrm{C}(-2,-3,5) and D(1,6,7)\mathrm{D}(1,-6,-7) is equal to :

Options:

A)

48

B)

8388 \sqrt{38}

C)

54

D)

9389 \sqrt{38}

Question 11

If A=[15λ10],A1=αA+βIA=\left[\begin{array}{cc}1 & 5 \\ \lambda & 10\end{array}\right], \mathrm{A}^{-1}=\alpha \mathrm{A}+\beta \mathrm{I} and α+β=2\alpha+\beta=-2, then 4α2+β2+λ24 \alpha^{2}+\beta^{2}+\lambda^{2} is equal to :

Options:

A)

12

B)

10

C)

19

D)

14

Question 12

The value of 36(4cos291)(4cos2271)(4cos2811)(4cos22431)36\left(4 \cos ^{2} 9^{\circ}-1\right)\left(4 \cos ^{2} 27^{\circ}-1\right)\left(4 \cos ^{2} 81^{\circ}-1\right)\left(4 \cos ^{2} 243^{\circ}-1\right) is :

Options:

A)

18

B)

36

C)

54

D)

27

Numerical TypeQuestion 13

Let [t][t] denote the greatest integer function. If \int_\limits{0}^{2.4}\left[x^{2}\right] d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}+\delta \sqrt{5}, then α+β+γ+δ\alpha+\beta+\gamma+\delta is equal to __________.

Numerical TypeQuestion 14

Let m and n\mathrm{n} be the numbers of real roots of the quadratic equations x212x+[x]+31=0x^{2}-12 x+[x]+31=0 and x25x+24=0x^{2}-5|x+2|-4=0 respectively, where [x][x] denotes the greatest integer x\leq x. Then m2+mn+n2\mathrm{m}^{2}+\mathrm{mn}+\mathrm{n}^{2} is equal to __________.

Question 15

A hydraulic automobile lift is designed to lift vehicles of mass 5000 kg5000 \mathrm{~kg}. The area of cross section of the cylinder carrying the load is 250 cm2250 \mathrm{~cm}^{2}. The maximum pressure the smaller piston would have to bear is [\left[\right. Assume g=10 m/s2]\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right]

Options:

A)

20×10+6 Pa20 \times 10^{+6} \mathrm{~Pa}

B)

200×10+6 Pa200 \times 10^{+6} \mathrm{~Pa}

C)

2×10+5 Pa2 \times 10^{+5} \mathrm{~Pa}

D)

2×10+6 Pa2 \times 10^{+6} \mathrm{~Pa}

Question 16

An emf of 0.08 V0.08 \mathrm{~V} is induced in a metal rod of length 10 cm10 \mathrm{~cm} held normal to a uniform magnetic field of 0.4 T0.4 \mathrm{~T}, when moves with a velocity of:

Options:

A)

20 ms120 \mathrm{~ms}^{-1}

B)

2 ms12 \mathrm{~ms}^{-1}

C)

3.2 ms13.2 \mathrm{~ms}^{-1}

D)

0.5 ms10.5 \mathrm{~ms}^{-1}

Question 17

Match List I with List II

LIST I
Coordination Complex
LIST II
Number of unpaired electrons
A. [Cr(CN)6]3\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-} I. 0
B. [Fe(H2O)6]2+\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} II. 3
C. [Co(NH3)6]3+\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} III. 2
D. [Ni(NH3)6]2+\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} IV. 4

Choose the correct answer from the options given below:

Options:

A)

A-IV, B-III, C-II, D-I

B)

A-II, B-I, C-IV, D-III

C)

A-II, B-IV, C-I, D-III

D)

A-III, B-IV, C-I, D-II

Question 18

The correct IUPAC nomenclature for the following compound is:

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Basics of Organic Chemistry Question 36 English

Options:

A)

2 - Formyl -5-methylhexan-6-oic acid

B)

5-Methyl-2-oxohexan-6-oic acid

C)

5-Formyl -2-methylhexanoic acid

D)

2-Methyl-5-oxohexanoic acid

Question 19

A compound 'X\mathrm{X}' when treated with phthalic anhydride in presence of concentrated H2SO4\mathrm{H}_{2} \mathrm{SO}_{4} yields 'Y\mathrm{Y}'. 'Y\mathrm{Y}' is used as an acid/base indicator. 'X\mathrm{X}' and 'Y\mathrm{Y}' are respectively

Options:

A)

Toludine, Phenolphthalein

B)

Carbolic acid, Phenolphthalein

C)

Salicylaldehyde, Phenolphthalein

D)

Anisole, methyl orange

Numerical TypeQuestion 20

The observed magnetic moment of the complex [Mn(NCS)6)]x\left.\left[\operatorname{Mn}(\underline{N} C S)_{6}\right)\right]^{x^{-}} is 6.06 BM6.06 ~\mathrm{BM}. The numerical value of xx is __________.

Numerical TypeQuestion 21

The solubility product of BaSO4\mathrm{BaSO}_{4} is 1×10101 \times 10^{-10} at 298 K298 \mathrm{~K}. The solubility of BaSO4\mathrm{BaSO}_{4} in 0.1 M K2SO4(aq)0.1 ~\mathrm{M} ~\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) solution is ___________ ×109 g L1\times 10^{-9} \mathrm{~g} \mathrm{~L}^{-1} (nearest integer).

Given: Molar mass of BaSO4\mathrm{BaSO}_{4} is 233 g mol1233 \mathrm{~g} \mathrm{~mol}^{-1}

Numerical TypeQuestion 22

If the boiling points of two solvents X and Y (having same molecular weights) are in the ratio 2:12: 1 and their enthalpy of vaporizations are in the ratio 1:21: 2, then the boiling point elevation constant of X\mathrm{X} is m\underline{\mathrm{m}} times the boiling point elevation constant of Y. The value of m is ____________ (nearest integer)

Numerical TypeQuestion 23

The sum of oxidation state of the metals in Fe(CO)5,VO2+\mathrm{Fe}(\mathrm{CO})_{5}, \mathrm{VO}^{2+} and WO3\mathrm{WO}_{3} is ___________.

Numerical TypeQuestion 24

The number of incorrect statements from the following is ___________.

A. The electrical work that a reaction can perform at constant pressure and temperature is equal to the reaction Gibbs energy.

B. Ecell\mathrm{E_{cell}^{\circ}} cell is dependent on the pressure.

C. dEθ cell dT=ΔrSθnF\frac{d E^{\theta} \text { cell }}{\mathrm{dT}}=\frac{\Delta_{\mathrm{r}} \mathrm{S}^{\theta}}{\mathrm{nF}}

D. A cell is operating reversibly if the cell potential is exactly balanced by an opposing source of potential difference.

Question 25

The integral [(x2)x+(2x)x]ln(ex2)dx \int\left[\left(\frac{x}{2}\right)^x+\left(\frac{2}{x}\right)^x\right] \ln \left(\frac{e x}{2}\right) d x is equal to :

Options:

A)

(x2)x+(2x)x+C\left(\frac{x}{2}\right)^{x}+\left(\frac{2}{x}\right)^{x}+C

B)

(x2)x(2x)x+C\left(\frac{x}{2}\right)^{x}-\left(\frac{2}{x}\right)^{x}+C

C)

(x2)xlog2(2x)+C\left(\frac{x}{2}\right)^{x} \log _{2}\left(\frac{2}{x}\right)+C

D)

None

Question 26

If α>β>0\alpha > \beta > 0 are the roots of the equation ax2+bx+1=0a x^{2}+b x+1=0, and \lim_\limits{x \rightarrow \frac{1}{\alpha}}\left(\frac{1-\cos \left(x^{2}+b x+a\right)}{2(1-\alpha x)^{2}}\right)^{\frac{1}{2}}=\frac{1}{k}\left(\frac{1}{\beta}-\frac{1}{\alpha}\right), \text { then } \mathrm{k} \text { is equal to } :

Options:

A)

2β2 \beta

B)

β\beta

C)

α\alpha

D)

2α2 \alpha

Numerical TypeQuestion 27

Let R={a,b,c,d,e}\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\} and S={1,2,3,4}\mathrm{S}=\{1,2,3,4\}. Total number of onto functions f:RSf: \mathrm{R} \rightarrow \mathrm{S} such that f(a)1f(\mathrm{a}) \neq 1, is equal to ______________.

Numerical TypeQuestion 28

If domain of the function loge(6x2+5x+12x1)+cos1(2x23x+43x5)\log _{e}\left(\frac{6 x^{2}+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^{2}-3 x+4}{3 x-5}\right) is (α,β)(γ,δ](\alpha, \beta) \cup(\gamma, \delta], then 18(α2+β2+γ2+δ2)18\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right) is equal to ______________.

Question 29

The product (P\mathrm{P}) formed from the following multistep reaction is:

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Compounds Containing Nitrogen Question 18 English

Options:

A)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Compounds Containing Nitrogen Question 18 English Option 1

B)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Compounds Containing Nitrogen Question 18 English Option 2

C)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Compounds Containing Nitrogen Question 18 English Option 3

D)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Compounds Containing Nitrogen Question 18 English Option 4

Question 30

Given below are two statements:

Statement I : Methyl orange is a weak acid.

Statement II : The benzenoid form of methyl orange is more intense/deeply coloured than the quinonoid form.

In the light of the above statement, choose the most appropriate answer from the options given below:

Options:

A)

Both Statement I and Statement II are incorrect

B)

Statement I\mathrm{I} is incorrect but Statement II is correct

C)

Both statement I and Statement II are correct

D)

Statement I is correct but Statement II is incorrect

Numerical TypeQuestion 31

The number of atomic orbitals from the following having 5 radial nodes is ___________.

7s,7p,6s,8p,8d7 \mathrm{s}, 7 \mathrm{p}, 6 \mathrm{s}, 8 \mathrm{p}, 8 \mathrm{d}

Question 32

Let A={θ(0,2π):1+2isinθ1isinθA=\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1-i \sin \theta}\right. is purely imaginary }\}. Then the sum of the elements in A\mathrm{A} is :

Options:

A)

3π3 \pi

B)

π\pi

C)

2π2 \pi

D)

4π4 \pi

Question 33

25190191908190+219025^{190}-19^{190}-8^{190}+2^{190} is divisible by :

Options:

A)

14 but not by 34

B)

neither 14 nor 34

C)

both 14 and 34

D)

34 but not by 14

Question 34

Let the mean and variance of 12 observations be 92\frac{9}{2} and 4 respectively. Later on, it was observed that two observations were considered as 9 and 10 instead of 7 and 14 respectively. If the correct variance is mn\frac{m}{n}, where m\mathrm{m} and n\mathrm{n} are coprime, then m+n\mathrm{m}+\mathrm{n} is equal to :

Options:

A)

317

B)

316

C)

314

D)

315

Question 35

Let S be the set of all values of θ[π,π]\theta \in[-\pi, \pi] for which the system of linear equations

x+y+3z=0x+y+\sqrt{3} z=0

x+(tanθ)y+7z=0-x+(\tan \theta) y+\sqrt{7} z=0

x+y+(tanθ)z=0x+y+(\tan \theta) z=0

has non-trivial solution. Then \frac{120}{\pi} \sum_\limits{\theta \in \mathrm{s}} \theta is equal to :

Options:

A)

40

B)

30

C)

10

D)

20

Numerical TypeQuestion 36

Let the area enclosed by the lines x+y=2,y=0,x=0x+y=2, \mathrm{y}=0, x=0 and the curve f(x)=min{x2+34,1+[x]}f(x)=\min \left\{x^{2}+\frac{3}{4}, 1+[x]\right\} where [x][x] denotes the greatest integer x\leq x, be A\mathrm{A}. Then the value of 12 A12 \mathrm{~A} is _____________.

Numerical TypeQuestion 37

Let the solution curve x=x(y),0<y<π2x=x(y), 0 < y < \frac{\pi}{2}, of the differential equation (loge(cosy))2cosy dx(1+3xloge(cosy))sinydy=0\left(\log _{e}(\cos y)\right)^{2} \cos y \mathrm{~d} x-\left(1+3 x \log _{e}(\cos y)\right) \sin \mathrm{y} d y=0 satisfy x(π3)=12loge2x\left(\frac{\pi}{3}\right)=\frac{1}{2 \log _{e} 2}. If x(π6)=1logemlogenx\left(\frac{\pi}{6}\right)=\frac{1}{\log _{e} m-\log _{e} n}, where mm and nn are coprime, then mnm n is equal to __________.

Question 38

Major product 'P\mathrm{P}' formed in the following reaction is:

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Haloalkanes and Haloarenes Question 17 English

Options:

A)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Haloalkanes and Haloarenes Question 17 English Option 1

B)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Haloalkanes and Haloarenes Question 17 English Option 2

C)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Haloalkanes and Haloarenes Question 17 English Option 3

D)

JEE Main 2023 (Online) 8th April Evening Shift Chemistry - Haloalkanes and Haloarenes Question 17 English Option 4

Question 39

If the probability that the random variable X\mathrm{X} takes values xx is given by P(X=x)=k(x+1)3x,x=0,1,2,3,\mathrm{P}(\mathrm{X}=x)=\mathrm{k}(x+1) 3^{-x}, x=0,1,2,3, \ldots, where k\mathrm{k} is a constant, then P(X2)\mathrm{P}(\mathrm{X} \geq 2) is equal to :

Options:

A)

718\frac{7}{18}

B)

2027\frac{20}{27}

C)

727\frac{7}{27}

D)

1118\frac{11}{18}

Question 40

Let A={1,2,3,4,5,6,7}\mathrm{A}=\{1,2,3,4,5,6,7\}. Then the relation R={(x,y)A×A:x+y=7}\mathrm{R}=\{(x, y) \in \mathrm{A} \times \mathrm{A}: x+y=7\} is :

Options:

A)

reflexive but neither symmetric nor transitive

B)

transitive but neither symmetric nor reflexive

C)

symmetric but neither reflexive nor transitive

D)

an equivalence relation

Question 41

The absolute difference of the coefficients of x10x^{10} and x7x^{7} in the expansion of (2x2+12x)11\left(2 x^{2}+\frac{1}{2 x}\right)^{11} is equal to :

Options:

A)

1131111^{3}-11

B)

1331313^{3}-13

C)

1231212^{3}-12

D)

1031010^{3}-10

Question 42

If the number of words, with or without meaning, which can be made using all the letters of the word MATHEMATICS in which C\mathrm{C} and S\mathrm{S} do not come together, is (6!)k(6 !) \mathrm{k}, then k\mathrm{k} is equal to :

Options:

A)

5670

B)

1890

C)

2835

D)

945

Numerical TypeQuestion 43

Let k\mathrm{k} and m\mathrm{m} be positive real numbers such that the function f(x)={3x2+kx+1,0<x<1mx2+k2,x1f(x)=\left\{\begin{array}{cc}3 x^{2}+k \sqrt{x+1}, & 0 < x < 1 \\ m x^{2}+k^{2}, & x \geq 1\end{array}\right. is differentiable for all x>0x > 0. Then 8f(8)f(18)\frac{8 f^{\prime}(8)}{f^{\prime}\left(\frac{1}{8}\right)} is equal to ____________.

Question 44

In photo electric effect

A. The photocurrent is proportional to the intensity of the incident radiation

B. Maximum Kinetic energy with which photoelectrons are emitted depends on the intensity of incident light.

C. Max. K.E with which photoelectrons are emitted depends on the frequency of incident light.

D. The emission of photoelectrons require a minimum threshold intensity of incident radiation.

E. Max. K.E of the photoelectrons is independent of the frequency of the incident light.

Choose the correct answer from the options given below:

Options:

A)

A and E only

B)

A and B only

C)

B and C only

D)

A and C only

Question 45

A bullet of mass 0.1 kg0.1 \mathrm{~kg} moving horizontally with speed 400 ms1400 \mathrm{~ms}^{-1} hits a wooden block of mass 3.9 kg3.9 \mathrm{~kg} kept on a horizontal rough surface. The bullet gets embedded into the block and moves 20 m20 \mathrm{~m} before coming to rest. The coefficient of friction between the block and the surface is __________.

(Given g=10 m/s2g=10 \mathrm{~m} / \mathrm{s}^{2} )

Options:

A)

0.65

B)

0.25

C)

0.50

D)

0.90

Question 46

The equivalent resistance between A and B as shown in figure is:

JEE Main 2023 (Online) 8th April Evening Shift Physics - Current Electricity Question 32 English

Options:

A)

30 kΩ30 ~\mathrm{k} \Omega

B)

20 kΩ20 ~\mathrm{k} \Omega

C)

5 kΩ5 ~\mathrm{k} \Omega

D)

10 kΩ10 ~\mathrm{k} \Omega

Question 47

Given below are two statements: one is labelled as Assertion A\mathbf{A} and the other is labelled as Reason R\mathbf{R}

Assertion A : Electromagnets are made of soft iron.

Reason R : Soft iron has high permeability and low retentivity.

In the light of above, statements, choose the most appropriate answer from the options given below.

Options:

A)

Both A and R are correct and R is the correct explanation of A

B)

A is not correct but R is correct

C)

A is correct but R is not correct

D)

Both A and R are correct but R is NOT the correct explanation of A

Question 48

Electric potential at a point 'P\mathrm{P}' due to a point charge of 5×109C5 \times 10^{-9} \mathrm{C} is 50 V50 \mathrm{~V}. The distance of 'P\mathrm{P}' from the point charge is:

(Assume, 14πε0=9×10+9 Nm2C2\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{+9} ~\mathrm{Nm}^{2} \mathrm{C}^{-2} )

Options:

A)

0.9 cm

B)

90 cm

C)

3 cm

D)

9 cm

Question 49

The orbital angular momentum of a satellite is L, when it is revolving in a circular orbit at height h from earth surface. If the distance of satellite from the earth centre is increased by eight times to its initial value, then the new angular momentum will be -

Options:

A)

9L

B)

8L

C)

4L

D)

3L

Question 50

Match List I with List II

LIST I LIST II
A. Torque I. ML2T2\mathrm{ML^{-2}T^{-2}}
B. Stress II. ML2T2\mathrm{ML^2T^{-2}}
C. Pressure gradient III. ML1T1\mathrm{ML^{-1}T^{-1}}
D. Coefficient of viscosity IV. ML1T2\mathrm{ML^{-1}T^{-2}}

Choose the correct answer from the options given below:

Options:

A)

A-II, B-I, C-IV, D-III

B)

A-II, B-IV, C-I, D-III

C)

A-IV, B-II, C-III, D-I

D)

A-III, B-IV, C-I, D-II

Numerical TypeQuestion 51

A guitar string of length 90 cm vibrates with a fundamental frequency of 120 Hz. The length of the string producing a fundamental frequency of 180 Hz will be _________ cm.

Question 52

For particle P revolving round the centre O with radius of circular path r\mathrm{r} and angular velocity ω\omega, as shown in below figure, the projection of OP on the xx-axis at time tt is

JEE Main 2023 (Online) 8th April Evening Shift Physics - Simple Harmonic Motion Question 12 English

Options:

A)

x(t)=cos(ωtπ6ω)x(t)=\operatorname{cos}\left(\omega t-\frac{\pi}{6} \omega\right)

B)

x(t)=cos(ωt)x(t)=\operatorname{cos}(\omega t)

C)

x(t)=rcos(ωt+π6)x(t)=r \cos \left(\omega t+\frac{\pi}{6}\right)

D)

x(t)=rsin(ωt+π6)x(t)=r \sin \left(\omega t+\frac{\pi}{6}\right)

Question 53

The acceleration due to gravity at height hh above the earth if h<<Rh << \mathrm{R} (Radius of earth) is given by

Options:

A)

g=g(12hR)g^{\prime}=g\left(1-\frac{2 h}{R}\right)

B)

g=g(12h2R2)g^{\prime}=g\left(1-\frac{2 h^{2}}{R^{2}}\right)

C)

g=g(1h22R2)g^{\prime}=g\left(1-\frac{h^{2}}{2 R^{2}}\right)

D)

g=g(1h2R)g^{\prime}=g\left(1-\frac{h}{2 R}\right)

Question 54

The width of fringe is 2 mm2 \mathrm{~mm} on the screen in a double slits experiment for the light of wavelength of 400 nm400 \mathrm{~nm}. The width of the fringe for the light of wavelength 600 nm\mathrm{nm} will be:

Options:

A)

4 mm

B)

1.33 mm

C)

2 mm

D)

3 mm

Numerical TypeQuestion 55

The ratio of wavelength of spectral lines Hα\mathrm{H}_{\alpha} and Hβ\mathrm{H}_{\beta} in the Balmer series is x20\frac{x}{20}. The value of xx is _________.

Numerical TypeQuestion 56

A steel rod of length 1 m1 \mathrm{~m} and cross sectional area 104 m210^{-4} \mathrm{~m}^{2} is heated from 0C0^{\circ} \mathrm{C} to 200C200^{\circ} \mathrm{C} without being allowed to extend or bend. The compressive tension produced in the rod is ___________ ×104 N\times 10^{4} \mathrm{~N}. (Given Young's modulus of steel =2×1011Nm2=2 \times 10^{11} \mathrm{Nm}^{-2}, coefficient of linear expansion =105 K1=10^{-5} \mathrm{~K}^{-1} )

Numerical TypeQuestion 57

A hollow spherical ball of uniform density rolls up a curved surface with an initial velocity 3 m/s3 \mathrm{~m} / \mathrm{s} (as shown in figure). Maximum height with respect to the initial position covered by it will be __________ cm.

JEE Main 2023 (Online) 8th April Evening Shift Physics - Rotational Motion Question 16 English

Question 58

The temperature at which the kinetic energy of oxygen molecules becomes double than its value at 27C27^{\circ} \mathrm{C} is

Options:

A)

627C627^{\circ} \mathrm{C}

B)

927C927^{\circ} \mathrm{C}

C)

327C327^{\circ} \mathrm{C}

D)

1227C1227^{\circ} \mathrm{C}

Question 59

Given below are two statements

Statement I : Area under velocity- time graph gives the distance travelled by the body in a given time.

Statement II : Area under acceleration- time graph is equal to the change in velocity- in the given time.

In the light of given statements, choose the correct answer from the options given below.

Options:

A)

Both Statement I and Statement II are False.

B)

Both Statement I and Statement II are true.

C)

Statement I is incorrect but Statement II is true.

D)

Statement I is correct but Statement II is false.

Question 60

The waves emitted when a metal target is bombarded with high energy electrons are

Options:

A)

Infrared rays

B)

Radio Waves

C)

Microwaves

D)

X-rays

Question 61

The trajectory of projectile, projected from the ground is given by y=xx220y=x-\frac{x^{2}}{20}. Where xx and yy are measured in meter. The maximum height attained by the projectile will be.

Options:

A)

10 m

B)

5 m

C)

200 m

D)

102\sqrt2 m

Numerical TypeQuestion 62

The number density of free electrons in copper is nearly 8×1028 m38 \times 10^{28} \mathrm{~m}^{-3}. A copper wire has its area of cross section =2×106 m2=2 \times 10^{-6} \mathrm{~m}^{2} and is carrying a current of 3.2 A3.2 \mathrm{~A}. The drift speed of the electrons is ___________ ×106ms1\times 10^{-6} \mathrm{ms}^{-1}

Numerical TypeQuestion 63

Two transparent media having refractive indices 1.0 and 1.5 are separated by a spherical refracting surface of radius of curvature 30 cm30 \mathrm{~cm}. The centre of curvature of surface is towards denser medium and a point object is placed on the principle axis in rarer medium at a distance of 15 cm15 \mathrm{~cm} from the pole of the surface. The distance of image from the pole of the surface is ____________ cm\mathrm{cm}.

Numerical TypeQuestion 64

A body of mass 5 kg5 \mathrm{~kg} is moving with a momentum of 10 kg ms110 \mathrm{~kg} \mathrm{~ms}^{-1}. Now a force of 2 N2 \mathrm{~N} acts on the body in the direction of its motion for 5 s5 \mathrm{~s}. The increase in the Kinetic energy of the body is ___________ J\mathrm{J}.

Numerical TypeQuestion 65

The ratio of magnetic field at the centre of a current carrying coil of radius rr to the magnetic field at distance rr from the centre of coil on its axis is x:1\sqrt{x}: 1. The value of xx is __________

Numerical TypeQuestion 66

A 600 pF600 ~\mathrm{pF} capacitor is charged by 200 V200 \mathrm{~V} supply. It is then disconnected from the supply and is connected to another uncharged 600 pF600 ~\mathrm{pF} capacitor. Electrostatic energy lost in the process is ____________ μJ\mu \mathrm{J}