Jeehub Logo

Feb 1, 2023

JEE Mains

Shift: 1

Total Questions Available: 71

Question 1

Which of the following complex will show largest splitting of d-orbitals?

Options:

A)

[Fe(C2O4)3]3[\mathrm{Fe(C_2O_4)_3]^{3-}}

B)

[Fe(CN)6]3[\mathrm{Fe(CN)_6]^{3-}}

C)

[Fe(NH3)6]3+[\mathrm{Fe(NH_3)_6]^{3+}}

D)

[FeF6]3[\mathrm{FeF_6]^{3-}}

Question 2

Which of the following are the example of double salt?

A. FeSO4(NH4)2SO46H2O\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}

B. CuSO44NH3H2O\mathrm{CuSO}_{4}\cdot 4 \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}

C. K2SO4Al2(SO4)324H2O\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}

D. Fe(CN)24KCN\mathrm{Fe}(\mathrm{CN})_{2}\cdot4 \mathrm{KCN}

Choose the correct answer :

Options:

A)

A, B and D only

B)

B and D only

C)

A and B only

D)

A and C only

Question 3

Highest oxidation state of Mn is exhibited in Mn2O7\mathrm{Mn_2O_7}. The correct statements about Mn2O7\mathrm{Mn_2O_7} are

(A) Mn is tetrahedrally surrounded by oxygen atoms.

(B) Mn is octahedrally surrounded by oxygen atoms.

(C) Contains Mn-O-Mn bridge.

(D) Contains Mn-Mn bond.

Choose the correct answer from the options given below :

Options:

A)

A and C only

B)

A and D only

C)

B and C only

D)

B and D only

Question 4

The correct representation in six membered pyranose form for the following sugar [X] is

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Biomolecules Question 32 English

Options:

A)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Biomolecules Question 32 English Option 1

B)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Biomolecules Question 32 English Option 2

C)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Biomolecules Question 32 English Option 3

D)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Biomolecules Question 32 English Option 4

Question 5

But-2-yne is reacted separately with one mole of Hydrogen as shown below :

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Hydrocarbons Question 30 English

A. A is more soluble than B.

B. The boiling point & melting point of A are higher and lower than B respectively.

C. A is more polar than B because dipole moment of A is zero.

D. Br2\mathrm{Br_2} adds easily to B than A.

Identify the incorrect statements from the options given below :

Options:

A)

A and B only

B)

A, C & D only

C)

B, C & D only

D)

C and D only

Question 6

Resonance in carbonate ion (CO32)\left(\mathrm{CO}_{3}{ }^{2-}\right) is

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Basics of Organic Chemistry Question 53 English

Which of the following is true?

Options:

A)

It is possible to identify each structure individually by some physical or chemical method.

B)

All these structures are in dynamic equilibrium with each other.

C)

Each structure exists for equal amount of time.

D)

CO32\mathrm{CO}_{3}{ }^{2-} has a single structure i.e., resonance hybrid of the above three structures.

Question 7

Match List I with List II

List I List II
Test Functional group / Class of Compound
A. Molisch's Test I. Peptide
B. Biuret Test II. Carbohydrate
C. Carbylamine Test III. Primary amine
D. Schiff's Test IV. Aldehyde

Choose the correct answer from the options given below :

Options:

A)

(A) - III, (B) - IV, (C) - II, (D) - I

B)

(A) - II, (B) - I, (C) - III, (D) - IV

C)

(A) - III, (B) - IV, (C) - I, (D) - II

D)

(A) - I, (B) - II, (C) - III, (D) - IV

Question 8

In the following reaction, 'A' is

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Compounds Containing Nitrogen Question 43 English

Options:

A)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Compounds Containing Nitrogen Question 43 English Option 1

B)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Compounds Containing Nitrogen Question 43 English Option 2

C)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Compounds Containing Nitrogen Question 43 English Option 3

D)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Compounds Containing Nitrogen Question 43 English Option 4

Question 9

A solution of FeCl3\mathrm{FeCl_3} when treated with K4[Fe(CN)6]\mathrm{K_4[Fe(CN)_6]} gives a prussium blue precipitate due to the formation of :

Options:

A)

Fe[Fe(CN)6]\mathrm{Fe[Fe(CN)_{6}]}

B)

Fe4[Fe(CN)6]3\mathrm{Fe_{4}[Fe(CN)_{6}]_{3}}

C)

Fe3[Fe(CN)6]2\mathrm{Fe_{3}[Fe(CN)_{6}]_{2}}

D)

K[Fe2(CN)6]\mathrm{K[Fe_{2}(CN)_{6}]}

Question 10

Identify the incorrect option from the following

Options:

A)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 39 English Option 1

B)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 39 English Option 2

C)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 39 English Option 3

D)

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 39 English Option 4

Question 11

Decreasing order of dehydration of the following alcohols is

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 40 English

Options:

A)

d > b > c > a

B)

b > d > c > a

C)

a > d > b > c

D)

b > a > d > c

Numerical TypeQuestion 12

25 mL of an aqueous solution of KCl was found to require 20 mL of 1 M AgNO3\mathrm{AgNO_3} solution when titrated using K2CrO4\mathrm{K_2CrO_4} as an indicator. What is the depression in freezing point of KCl solution of the given concentration? _________ (Nearest integer).

(Given : Kf=2.0 K kg mol1\mathrm{K_f=2.0~K~kg~mol^{-1}})

Assume 1) 100% ionization and 2) density of the aqueous solution as 1 g mL1^{-1}

Numerical TypeQuestion 13

Electrons in a cathode ray tube have been emitted with a velocity of 1000 m s1^{-1}. The number of following statements which is/are true\underline {\mathrm{true}} about the emitted radiation is ____________.

Given : h=6×1034 J s,me=9×1031 kg\mathrm{h=6\times10^{-34}~J~s,m_e=9\times10^{-31}~kg}.

(A) The de-Broglie wavelength of the electron emitted is 666.67 nm.

(B) The characteristic of electrons emitted depend upon the material of the electrodes of the cathode ray tube.

(C) The cathode rays start from cathode and move towards anode.

(D) The nature of the emitted electrons depends on the nature of the gas present in cathode ray tube.

Numerical TypeQuestion 14

At what pH, given half cell MnO4(0.1 M)  Mn2+(0.001 M)\mathrm{MnO_{4}^{-}(0.1~M)~|~Mn^{2+}(0.001~M)} will have electrode potential of 1.282 V? ___________ (Nearest Integer)

Given EMnO4Mn2+o=1.54 V,2.303RTF=0.059V\mathrm{E_{MnO_4^ - |M{n^{2 + }}}^o}=1.54~\mathrm{V},\frac{2.303\mathrm{RT}}{\mathrm{F}}=0.059\mathrm{V}

Numerical TypeQuestion 15

A and B are two substances undergoing radioactive decay in a container. The half life of A is 15 min and that of B is 5 min. If the initial concentration of B is 4 times that of A and they both start decaying at the same time, how much time will it take for the concentration of both of them to be same? _____________ min.

Numerical TypeQuestion 16

At 25C25^{\circ} \mathrm{C}, the enthalpy of the following processes are given :

H2(g)+O2(g)\mathrm{H_2(g)+O_2(g)} \to 2OH(g)2\mathrm{OH(g)} ΔH=78 kJ mol1\mathrm{\Delta H^\circ=78~kJ~mol^{-1}}
H2(g)+12O2(g)\mathrm{H_2(g)+\frac{1}{2}O_2(g)} \to H2O(g)\mathrm{H_2O(g)} ΔH=242 kJ mol1\mathrm{\Delta H^\circ=-242~kJ~mol^{-1}}
H2(g)\mathrm{H_2(g)} \to 2H(g)\mathrm{2H(g)} ΔH=436 kJ mol1\mathrm{\Delta H^\circ=436~kJ~mol^{-1}}
12O2(g)\frac{1}{2}\mathrm{O_2(g)} \to O(g)\mathrm{O(g)} ΔH=249 kJ mol1\mathrm{\Delta H^\circ=249~kJ~mol^{-1}}

What would be the value of X for the following reaction ? _____________ (Nearest integer)

H2O(g)H(g)+OH(g) ΔH=X kJ mol1\mathrm{H_2O(g)\to H(g)+OH(g)~\Delta H^\circ=X~kJ~mol^{-1}}

Numerical TypeQuestion 17

Sum of oxidation states of bromine in bromic acid and perbromic acid is ___________.

Numerical TypeQuestion 18

Number of isomeric compounds with molecular formula C9H10O\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O} which (i) do not dissolve in NaOH\mathrm{NaOH} (ii) do not dissolve in HCl\mathrm{HCl}. (iii) do not give orange precipitate with 2,4-DNP (iv) on hydrogenation give identical compound with molecular formula C9H12O\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O} is ____________.

Numerical TypeQuestion 19

The total number of chiral compound/s from the following is ______________.

JEE Main 2023 (Online) 1st February Morning Shift Chemistry - Basics of Organic Chemistry Question 52 English

Numerical TypeQuestion 20

(i) X(g)Y(g)+Z(g)Kp1=3\mathrm{X}(\mathrm{g}) \rightleftharpoons \mathrm{Y}(\mathrm{g})+\mathrm{Z}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{p} 1}=3

(ii) A(g)2 B(g)Kp2=1\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{p} 2}=1

If the degree of dissociation and initial concentration of both the reactants X(g)\mathrm{X}(\mathrm{g}) and A(g)\mathrm{A}(\mathrm{g}) are equal, then the ratio of the total pressure at equilibrium (p1p2)\left(\frac{p_{1}}{p_{2}}\right) is equal to x:1\mathrm{x}: 1. The value of x\mathrm{x} is _____________ (Nearest integer)

Numerical TypeQuestion 21

The density of 3M3 \mathrm{M} solution of NaCl\mathrm{NaCl} is 1.0 g mL11.0 \mathrm{~g} \mathrm{~mL}^{-1}. Molality of the solution is ____________ ×102 m\times 10^{-2} \mathrm{~m}. (Nearest integer).

Given: Molar mass of Na\mathrm{Na} and Cl\mathrm{Cl} is 2323 and 35.5 g mol135.5 \mathrm{~g} \mathrm{~mol}^{-1} respectively.

Question 22

The value of 11!50!+13!48!+15!46!+.+149!2!+151!1!\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots .+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !} is :

Options:

A)

25150!\frac{2^{51}}{50 !}

B)

25151!\frac{2^{51}}{51 !}

C)

25050!\frac{2^{50}}{50 !}

D)

25051!\frac{2^{50}}{51 !}

Question 23

Let SS be the set of all solutions of the equation cos1(2x)2cos1(1x2)=π,x[12,12]\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\pi, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]. Then \sum_\limits{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right) is equal to :

Options:

A)

π2sin1(34)\pi-2 \sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)

B)

πsin1(34)\pi-\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)

C)

2π3\frac{-2 \pi}{3}

D)

None

Question 24

Let RR be a relation on R\mathbb{R}, given by R={(a,b):3a3b+7R=\{(a, b): 3 a-3 b+\sqrt{7} is an irrational number }\}. Then RR is

Options:

A)

an equivalence relation

B)

reflexive and symmetric but not transitive

C)

reflexive and transitive but not symmetric

D)

reflexive but neither symmetric nor transitive

Question 25

The shortest distance between the lines

x51=y22=z43{{x - 5} \over 1} = {{y - 2} \over 2} = {{z - 4} \over { - 3}} and

x+31=y+54=z15{{x + 3} \over 1} = {{y + 5} \over 4} = {{z - 1} \over { - 5}} is :

Options:

A)

737\sqrt 3

B)

535\sqrt 3

C)

434\sqrt 3

D)

636\sqrt 3

Question 26

Let SS denote the set of all real values of λ\lambda such that the system of equations

λx+y+z=1\lambda x+y+z=1

x+λy+z=1x+\lambda y+z=1

x+y+λz=1x+y+\lambda z=1

is inconsistent, then \sum_\limits{\lambda \in S}\left(|\lambda|^{2}+|\lambda|\right) is equal to

Options:

A)

12

B)

2

C)

4

D)

6

Question 27

Let S={x:xRand(3+2)x24+(32)x24=10}S = \left\{ {x:x \in \mathbb{R}\,\mathrm{and}\,{{(\sqrt 3 + \sqrt 2 )}^{{x^2} - 4}} + {{(\sqrt 3 - \sqrt 2 )}^{{x^2} - 4}} = 10} \right\}. Then n(S)n(S) is equal to

Options:

A)

6

B)

4

C)

0

D)

2

Question 28

If the center and radius of the circle z2z3=2\left| {{{z - 2} \over {z - 3}}} \right| = 2 are respectively (α,β)(\alpha,\beta) and γ\gamma, then 3(α+β+γ)3(\alpha+\beta+\gamma) is equal to :

Options:

A)

12

B)

10

C)

11

D)

9

Question 29

The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5, then the sum of cubes of the remaining two observations is :

Options:

A)

1792

B)

1216

C)

1456

D)

1072

Question 30

Let f(x)=2x+tan1xf(x) = 2x + {\tan ^{ - 1}}x and g(x)=loge(1+x2+x),x[0,3]g(x) = {\log _e}(\sqrt {1 + {x^2}} + x),x \in [0,3]. Then

Options:

A)

there exists x^[0,3]\widehat x \in [0,3] such that f(x^)<g(x^)f'(\widehat x) < g'(\widehat x)

B)

there exist 0<x1<x2<30 < {x_1} < {x_2} < 3 such that f(x)<g(x),x(x1,x2)f(x) < g(x),\forall x \in ({x_1},{x_2})

C)

minf(x)=1+maxg(x)\min f'(x) = 1 + \max g'(x)

D)

maxf(x)>maxg(x)\max f(x) > \max g(x)

Question 31

Let f(x) = \left| {\matrix{ {1 + {{\sin }^2}x} & {{{\cos }^2}x} & {\sin 2x} \cr {{{\sin }^2}x} & {1 + {{\cos }^2}x} & {\sin 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {1 + \sin 2x} \cr } } \right|,\,x \in \left[ {{\pi \over 6},{\pi \over 3}} \right]\(. If \)\alpha\( and \)\beta\( respectively are the maximum and the minimum values of \)f, then

Options:

A)

α2β2=43{\alpha ^2} - {\beta ^2} = 4\sqrt 3

B)

β22α=194{\beta ^2} - 2\sqrt \alpha = {{19} \over 4}

C)

β2+2α=194{\beta ^2} + 2\sqrt \alpha = {{19} \over 4}

D)

α2+β2=92{\alpha ^2} + {\beta ^2} = {9 \over 2}

Question 32

The area enclosed by the closed curve C\mathrm{C} given by the differential equation

dydx+x+ay2=0,y(1)=0\frac{d y}{d x}+\frac{x+a}{y-2}=0, y(1)=0 is 4π4 \pi.

Let PP and QQ be the points of intersection of the curve C\mathrm{C} and the yy-axis. If normals at PP and QQ on the curve C\mathrm{C} intersect xx-axis at points RR and SS respectively, then the length of the line segment RSR S is :

Options:

A)

433\frac{4 \sqrt{3}}{3}

B)

232 \sqrt{3}

C)

2

D)

233\frac{2 \sqrt{3}}{3}

Question 33

If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3, 1) is (α,β)(\alpha,\beta), then the quadratic equation whose roots are α+4β\alpha+4\beta and 4α+β4\alpha+\beta, is :

Options:

A)

x220x+99=0x^2-20x+99=0

B)

x222x+120=0x^2-22x+120=0

C)

x219x+90=0x^2-19x+90=0

D)

x218x+80=0x^2-18x+80=0

Question 34

If y=y(x)y=y(x) is the solution curve of the differential equation

dydx+ytanx=xsecx,0xπ3,y(0)=1\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1, then y(π6)y\left(\frac{\pi}{6}\right) is equal to

Options:

A)

π1232loge(23e)\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)

B)

π12+32loge(23e)\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)

C)

π12+32loge(2e3)\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)

D)

π1232loge(2e3)\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)

Numerical TypeQuestion 35

If \int_\limits{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x=\frac{1}{l}(11)^{m / n} where l,m,nN,ml, m, n \in \mathbb{N}, m and nn are coprime then l+m+nl+m+n is equal to ____________.

Numerical TypeQuestion 36

Let a1=8,a2,a3,,ana_{1}=8, a_{2}, a_{3}, \ldots, a_{n} be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170 , then the product of its middle two terms is ___________.

Numerical TypeQuestion 37

Let f:RRf: \mathbb{R} \rightarrow \mathbb{R} be a differentiable function such that f^{\prime}(x)+f(x)=\int_\limits{0}^{2} f(t) d t. If f(0)=e2f(0)=e^{-2}, then 2f(0)f(2)2 f(0)-f(2) is equal to ____________.

Numerical TypeQuestion 38

The remainder, when 19200+2320019^{200}+23^{200} is divided by 49 , is ___________.

Numerical TypeQuestion 39

The number of 3-digit numbers, that are divisible by either 2 or 3 but not divisible by 7, is ____________.

Numerical TypeQuestion 40

The number of words, with or without meaning, that can be formed using all the letters of the word ASSASSINATION so that the vowels occur together, is ___________.

Numerical TypeQuestion 41

Let AA be the area bounded by the curve y=xx3y=x|x-3|, the xx-axis and the ordinates x=1x=-1 and x=2x=2. Then 12A12 A is equal to ____________.

Numerical TypeQuestion 42

A(2,6,2),B(4,0,λ),C(2,3,1)A(2,6,2), B(-4,0, \lambda), C(2,3,-1) and D(4,5,0),λ5D(4,5,0),|\lambda| \leq 5 are the vertices of a quadrilateral ABCDA B C D. If its area is 18 square units, then 56λ5-6 \lambda is equal to __________.

Numerical TypeQuestion 43

If f(x)=x2+g(1)x+g(2)f(x)=x^{2}+g^{\prime}(1) x+g^{\prime \prime}(2) and g(x)=f(1)x2+xf(x)+f(x)g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x), then the value of f(4)g(4)f(4)-g(4) is equal to ____________.

Question 44

Let σ\sigma be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region EI,EIIE_{I}, E_{I I} and EIIIE_{I I I} are:

JEE Main 2023 (Online) 1st February Morning Shift Physics - Electrostatics Question 51 English

Options:

A)

EI=0,EII=σϵ0n^,EIII=0\vec{E}_{I}=0, \vec{E}_{I I}=\frac{\sigma}{\epsilon_{0}} \hat{n}, E_{I I I}=0

B)

EI=σ2ϵ0n^,EII=0,EIII=σ2ϵ0n^\vec{E}_{I}=\frac{\sigma}{2 \epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\frac{\sigma}{2 \epsilon_{0}} \hat{n}

C)

EI=σϵ0n^,EII=0,EIII=σϵ0n^\vec{E}_{I}=-\frac{\sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\frac{\sigma}{\epsilon_{0}} \hat{n}

D)

EI=2σϵ0n^,EII=0,EIII=2σϵ0n^\vec{E}_{I}=\frac{2 \sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\frac{2 \sigma}{\epsilon_{0}} \hat{n}

Question 45

'nn' polarizing sheets are arranged such that each makes an angle 4545^{\circ} with the preceeding sheet. An unpolarized light of intensity I is incident into this arrangement. The output intensity is found to be I/64I / 64. The value of nn will be:

Options:

A)

4

B)

5

C)

3

D)

6

Question 46

Match List - I with List - II :

List I List II
A. AC generator I. Presence of both L and C
B. Transformer II. Electromagnetic Induction
C. Resonance phenomenon to occur III. Quality factor
D. Sharpness of resonance IV. Mutual Induction

Choose the correct answer from the options given below :

Options:

A)

A-II, B-I, C-III, D-IV

B)

A-IV, B-III, C-I, D-II

C)

A-II, B-IV, C-I, D-III

D)

A-IV, B-II, C-I, D-III

Question 47

Match List I with List II:

List I List II
A. Intrinsic semiconductor I. Fermi-level near the valence bond
B. n-type semiconductor II. Fermi-level in the middle of valence and conduction band.
C. p-type semiconductor III. Fermi-level near the conduction band
D. Metals IV. Fermi-level inside the conduction band

Choose the correct answer from the options given below :

Options:

A)

A-III, B-I, C-II, D-IV

B)

A-II, B-I, C-III, D-IV

C)

A-I, B-II, C-III, D-IV

D)

A-II, B-III, C-I, D-IV

Question 48

Find the magnetic field at the point P\mathrm{P} in figure. The curved portion is a semicircle connected to two long straight wires.

JEE Main 2023 (Online) 1st February Morning Shift Physics - Magnetic Effect of Current Question 40 English

Options:

A)

μ0i2r(12+12π)\frac{\mu_{0} i}{2 r}\left(\frac{1}{2}+\frac{1}{2 \pi}\right)

B)

μoi2r(1+2π)\frac{\mu_{\mathrm{o}} i}{2 r}\left(1+\frac{2}{\pi}\right)

C)

μ0i˙2r(12+1π)\frac{\mu_{0} \dot{i}}{2 r}\left(\frac{1}{2}+\frac{1}{\pi}\right)

D)

μ0i2r(1+1π)\frac{\mu_{0} i}{2 r}\left(1+\frac{1}{\pi}\right)

Question 49

The equivalent resistance between AA and BB of the network shown in figure;

JEE Main 2023 (Online) 1st February Morning Shift Physics - Current Electricity Question 69 English

Options:

A)

21 R

B)

83\frac{8}{3} R

C)

1123\frac{2}{3} R

D)

14 R

Question 50

If earth has a mass nine times and radius twice to that of a planet P. Then ve3x ms1\frac{v_{e}}{3} \sqrt{x} \mathrm{~ms}^{-1} will be the minimum velocity required by a rocket to pull out of gravitational force of P\mathrm{P}, where vev_{e} is escape velocity on earth. The value of xx is

Options:

A)

1

B)

3

C)

2

D)

18

Question 51

A steel wire with mass per unit length 7.0×103 kg m17.0 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-1} is under tension of 70 N70 \mathrm{~N}. The speed of transverse waves in the wire will be:

Options:

A)

10 m/s10 \mathrm{~m} / \mathrm{s}

B)

50 m/s50 \mathrm{~m} / \mathrm{s}

C)

100 m/s100 \mathrm{~m} / \mathrm{s}

D)

200π m/s200 \pi\mathrm{~m} / \mathrm{s}

Question 52

An object moves with speed v1,v2v_1,v_2 and v3v_3 along a line segment AB, BC and CD respectively as shown in figure. Where AB = BC and AD = 3AB, then average speed of the object will be:

JEE Main 2023 (Online) 1st February Morning Shift Physics - Motion Question 42 English

Options:

A)

v1v2v33(v1v2+v2v3+v3v1){{{v_1}{v_2}{v_3}} \over {3({v_1}{v_2} + {v_2}{v_3} + {v_3}{v_1})}}

B)

(v1+v2+v3)3{{({v_1} + {v_2} + {v_3})} \over 3}

C)

(v1+v2+v3)3v1v2v3{{({v_1} + {v_2} + {v_3})} \over {3{v_1}{v_2}{v_3}}}

D)

3v1v2v3(v1v2+v2v3+v3v1){{3{v_1}{v_2}{v_3}} \over {({v_1}{v_2} + {v_2}{v_3} + {v_3}{v_1})}}

Question 53

A child stands on the edge of the cliff 10 m10 \mathrm{~m} above the ground and throws a stone horizontally with an initial speed of 5 ms15 \mathrm{~ms}^{-1}. Neglecting the air resistance, the speed with which the stone hits the ground will be ms1\mathrm{ms}^{-1} (given, g=10 ms2g=10 \mathrm{~ms}^{-2} ).

Options:

A)

20

B)

25

C)

30

D)

15

Question 54

A proton moving with one tenth of velocity of light has a certain de Broglie wavelength of λ\lambda. An alpha particle having certain kinetic energy has the same de-Brogle wavelength λ\lambda. The ratio of kinetic energy of proton and that of alpha particle is:

Options:

A)

1 : 4

B)

2 : 1

C)

4 : 1

D)

1 : 2

Question 55

Given below are two statements:

Statement I: Acceleration due to gravity is different at different places on the surface of earth.

Statement II: Acceleration due to gravity increases as we go down below the earth's surface.

In the light of the above statements, choose the correct answer from the options given below

Options:

A)

Both Statement I and Statement II are true

B)

Both Statement I and Statement II are false

C)

Statement I is false but Statement II is true

D)

Statement I is true but Statement II is false

Question 56

A sample of gas at temperature TT is adiabatically expanded to double its volume. The work done by the gas in the process is (given,γ=32)\left(\mathrm{given}, \gamma=\frac{3}{2}\right) :

Options:

A)

W=TR[22]W=T R[\sqrt{2}-2]

B)

W=TR[22]W=\frac{T}{R}[\sqrt{2}-2]

C)

W=RT[22]W=\frac{R}{T}[2-\sqrt{2}]

D)

W=RT[22]W=R T[2-\sqrt{2}]

Question 57

A block of mass 5 kg5 \mathrm{~kg} is placed at rest on a table of rough surface. Now, if a force of 30 N30 \mathrm{~N} is applied in the direction parallel to surface of the table, the block slides through a distance of 50 m50 \mathrm{~m} in an interval of time 10 s10 \mathrm{~s}. Coefficient of kinetic friction is (given, g=10 ms2g=10 \mathrm{~ms}^{-2}):

Options:

A)

0.25

B)

0.75

C)

0.60

D)

0.50

Question 58

Match List I with List II :

List I List II
A. Microwaves I. Radio active decay of the nucleus
B. Gamma rays II. Rapid acceleration and deceleration of electron in aerials
C. Radio waves III. Inner shell electrons
D. X-rays IV. Klystron valve

Choose the correct answer from the options given below :

Options:

A)

A-I, B-III, C-IV, D-II

B)

A-IV, B-III, C-II, D-I

C)

A-IV, B-I, C-II, D-III

D)

A-I, B-II, C-III, D-IV

Question 59

The mass of proton, neutron and helium nucleus are respectively 1.0073 u,1.0087 u1.0073~u,1.0087~u and 4.0015 u4.0015~u. The binding energy of helium nucleus is :

Options:

A)

28.4 MeV28.4~\mathrm{MeV}

B)

56.8 MeV56.8~\mathrm{MeV}

C)

7.1 MeV7.1~\mathrm{MeV}

D)

14.2 MeV14.2~\mathrm{MeV}

Question 60

(P+aV2)(Vb)=RT\left(P+\frac{a}{V^{2}}\right)(V-b)=R T represents the equation of state of some gases. Where PP is the pressure, VV is the volume, TT is the temperature and a,b,Ra, b, R are the constants. The physical quantity, which has dimensional formula as that of b2a\frac{b^{2}}{a}, will be:

Options:

A)

Energy density

B)

Bulk modulus

C)

Modulus of rigidity

D)

Compressibility

Question 61

The average kinetic energy of a molecule of the gas is

Options:

A)

proportional to volume

B)

dependent on the nature of the gas

C)

proportional to absolute temperature

D)

proportional to pressure

Question 62

A mercury drop of radius 103 m10^{-3}~\mathrm{m} is broken into 125 equal size droplets. Surface tension of mercury is 0.45 Nm10.45~\mathrm{Nm}^{-1}. The gain in surface energy is :

Options:

A)

28×105 J28\times10^{-5}~\mathrm{J}

B)

17.5×105 J17.5\times10^{-5}~\mathrm{J}

C)

5×105 J5\times10^{-5}~\mathrm{J}

D)

2.26×105 J2.26\times10^{-5}~\mathrm{J}

Numerical TypeQuestion 63

Two equal positive point charges are separated by a distance 2a2 a. The distance of a point from the centre of the line joining two charges on the equatorial line (perpendicular bisector) at which force experienced by a test charge q0\mathrm{q}_{0} becomes maximum is ax\frac{a}{\sqrt{x}}. The value of xx is __________.

Numerical TypeQuestion 64

A charge particle of 2 μC2 ~\mu \mathrm{C} accelerated by a potential difference of 100 V100 \mathrm{~V} enters a region of uniform magnetic field of magnitude 4 mT4 ~\mathrm{mT} at right angle to the direction of field. The charge particle completes semicircle of radius 3 cm3 \mathrm{~cm} inside magnetic field. The mass of the charge particle is __________ ×1018 kg\times 10^{-18} \mathrm{~kg}

Numerical TypeQuestion 65

A light of energy 12.75 eV12.75 ~\mathrm{eV} is incident on a hydrogen atom in its ground state. The atom absorbs the radiation and reaches to one of its excited states. The angular momentum of the atom in the excited state is xπ×1017 eVs\frac{x}{\pi} \times 10^{-17} ~\mathrm{eVs}. The value of xx is ___________ (use h=4.14×1015 eVs,c=3×108 ms1h=4.14 \times 10^{-15} ~\mathrm{eVs}, c=3 \times 10^{8} \mathrm{~ms}^{-1} ).

Numerical TypeQuestion 66

A thin cylindrical rod of length 10 cm10 \mathrm{~cm} is placed horizontally on the principle axis of a concave mirror of focal length 20 cm20 \mathrm{~cm}. The rod is placed in a such a way that mid point of the rod is at 40 cm40 \mathrm{~cm} from the pole of mirror. The length of the image formed by the mirror will be x3 cm\frac{x}{3} \mathrm{~cm}. The value of xx is _____________.

Numerical TypeQuestion 67

A small particle moves to position 5i^2j^+k^5 \hat{i}-2 \hat{j}+\hat{k} from its initial position 2i^+3j^4k^2 \hat{i}+3 \hat{j}-4 \hat{k} under the action of force 5i^+2j^+7k^ N5 \hat{i}+2 \hat{j}+7 \hat{k} \mathrm{~N}. The value of work done will be __________ J.

Numerical TypeQuestion 68

A series LCR circuit is connected to an ac source of 220 V,50 Hz220 \mathrm{~V}, 50 \mathrm{~Hz}. The circuit contain a resistance R=100 Ω\mathrm{R}=100 ~\Omega and an inductor of inductive reactance XL=79.6 Ω\mathrm{X}_{\mathrm{L}}=79.6 ~\Omega. The capacitance of the capacitor needed to maximize the average rate at which energy is supplied will be _________ μF\mu \mathrm{F}.

Numerical TypeQuestion 69

A solid cylinder is released from rest from the top of an inclined plane of inclination 3030^{\circ} and length 60 cm60 \mathrm{~cm}. If the cylinder rolls without slipping, its speed upon reaching the bottom of the inclined plane is __________ ms1\mathrm{ms}^{-1}. (Given g=10 ms2\mathrm{g}=10 \mathrm{~ms}^{-2})

JEE Main 2023 (Online) 1st February Morning Shift Physics - Rotational Motion Question 35 English

Numerical TypeQuestion 70

The amplitude of a particle executing SHM is 3 cm3 \mathrm{~cm}. The displacement at which its kinetic energy will be 25%25 \% more than the potential energy is: __________ cm\mathrm{cm}

Numerical TypeQuestion 71

A certain pressure 'P\mathrm{P}' is applied to 1 litre of water and 2 litre of a liquid separately. Water gets compressed to 0.01%0.01 \% whereas the liquid gets compressed to 0.03%0.03 \%. The ratio of Bulk modulus of water to that of the liquid is 3x\frac{3}{x}. The value of xx is ____________.