Jeehub Logo

Jan 31, 2023

JEE Mains

Shift: 2

Total Questions Available: 72

Question 1

When a hydrocarbon A undergoes complete combustion it requires 11 equivalents of oxygen and produces 4 equivalents of water. What is the molecular formula of AA ?

Options:

A)

C9H8\mathrm{C}_{9} \mathrm{H}_{8}

B)

C5H8\mathrm{C}_{5} \mathrm{H}_{8}

C)

C11H4\mathrm{C}_{11} \mathrm{H}_{4}

D)

C11H8\mathrm{C}_{11} \mathrm{H}_{8}

Question 2

Cyclohexylamine when treated with nitrous acid yields (P)(\mathrm{P}). On treating (P)(\mathrm{P}) with PCC\mathrm{PCC} results in (Q). When (Q)(\mathrm{Q}) is heated with dil. NaOH\mathrm{NaOH} we get (R)(\mathrm{R}) The final product (R) is :

Options:

A)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 44 English Option 1

B)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 44 English Option 2

C)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 44 English Option 3

D)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 44 English Option 4

Question 3

Compound A,C5H10O5\mathrm{A}, \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}, given a tetraacetate with Ac2O\mathrm{Ac}_{2} \mathrm{O} and oxidation of A\mathrm{A} with Br2H2O\mathrm{Br}_{2}-\mathrm{H}_{2} \mathrm{O} gives an acid, C5H10O6\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{6}. Reduction of A\mathrm{A} with HI\mathrm{HI} gives isopentane. The possible structure of A\mathrm{A} is

Options:

A)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Alcohols, Phenols and Ethers Question 41 English Option 1

B)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Alcohols, Phenols and Ethers Question 41 English Option 2

C)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Alcohols, Phenols and Ethers Question 41 English Option 3

D)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Alcohols, Phenols and Ethers Question 41 English Option 4

Question 4

An organic compound [A](C4H11 N)[\mathrm{A}]\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}\right), shows optical activity and gives N2\mathrm{N}_{2} gas on treatment with HNO2\mathrm{HNO}_{2}. The compound [A][\mathrm{A}] reacts with PhSO2Cl\mathrm{PhSO}_{2} \mathrm{Cl} producing a compound which is soluble in KOH\mathrm{KOH}. The structure of A\mathrm{A} is :

Options:

A)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Compounds Containing Nitrogen Question 44 English Option 1

B)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Compounds Containing Nitrogen Question 44 English Option 2

C)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Compounds Containing Nitrogen Question 44 English Option 3

D)

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Compounds Containing Nitrogen Question 44 English Option 4

Question 5

Which of the following elements have half-filled f-orbitals in their ground state?

(Given : atomic number Sm=62;Eu=63;Tb=65;Gd=64,Pm=61\mathrm{Sm}=62 ; \mathrm{Eu}=63 ; \mathrm{Tb}=65 ; \mathrm{Gd}=64, \mathrm{Pm}=61 )

A. Sm\mathrm{Sm}

B. Eu

C. Tb\mathrm{Tb}

D. Gd

E. Pm\mathrm{Pm}

Choose the correct answer from the options given below :

Options:

A)

B and D only

B)

A and BB only

C)

CC and D\mathrm{D} only

D)

A and E only

Question 6

Evaluate the following statements for their correctness.

A. The elevation in boiling point temperature of water will be same for 0.1MNaCl0.1 \mathrm{M} \, \mathrm{NaCl} and 0.1M0.1 \mathrm{M} urea.

B. Azeotropic mixtures boil without change in their composition.

C. Osmosis always takes place from hypertonic to hypotonic solution.

D. The density of 32%H2SO432 \% \, \mathrm{H}_{2} \mathrm{SO}_{4} solution having molarity 4.09 M4.09 ~\mathrm{M} is approximately 1.26 g mL11.26 \mathrm{~g} \mathrm{~mL}^{-1}

E. A negatively charged sol is obtained when KI solution is added to silver nitrate solution.

Choose the correct answer from the options given below :

Options:

A)

A, B and D only

B)

A and C only

C)

B and D only

D)

B, D and E only

Question 7

Arrange the following orbitals in decreasing order of energy.

A. n=3,l=0, m=0\mathrm{n}=3, \mathrm{l}=0, \mathrm{~m}=0

B. n=4,l=0, m=0\mathrm{n}=4, \mathrm{l}=0, \mathrm{~m}=0

C. n=3,l=1, m=0\mathrm{n}=3, \mathrm{l}=1, \mathrm{~m}=0

D. n=3,l=2, m=1\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}=1

The correct option for the order is :

Options:

A)

B>D>C>A\mathrm{B}>\mathrm{D}>\mathrm{C}>\mathrm{A}

B)

A>C>B>D\mathrm{A}>\mathrm{C}>\mathrm{B}>\mathrm{D}

C)

D>B>A>C\mathrm{D}>\mathrm{B}>\mathrm{A}>\mathrm{C}

D)

D>B>C>A\mathrm{D}>\mathrm{B}>\mathrm{C}>\mathrm{A}

Question 8

In Dumas method for the estimation of N2\mathrm{N}_{2}, the sample is heated with copper oxide and the gas evolved is passed over :

Options:

A)

Copper oxide

B)

Copper gauze

C)

Pd\mathrm{Pd}

D)

Ni\mathrm{Ni}

Question 9

Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R)

Assertion (A): The first ionization enthalpy of 3 d3 \mathrm{~d} series elements is more than that of group 2 metals

Reason (R): In 3d series of elements successive filling of d-orbitals takes place.

In the light of the above statements, choose the correct answer from the options given below :

Options:

A)

Both (A) and (R) are true and (R) is the correct explanation of (A)

B)

(A) is true but (R) is false

C)

Both (A) and (R) are true but (R)(\mathbf{R}) is not the correct explanation of (A)

D)

(A) is false but (R) is true

Question 10

A hydrocarbon ' X\mathrm{X} ' with formula C6H8\mathrm{C}_{6} \mathrm{H}_{8} uses two moles of H2\mathrm{H}_{2} on catalytic hydrogenation of its one mole. On ozonolysis, ' X\mathrm{X} ' yields two moles of methane dicarbaldehyde. The hydrocarbon ' X\mathrm{X} ' is:

Options:

A)

hexa-1, 3, 5-triene

B)

cyclohexa-1, 4-diene

C)

cyclohexa - 1,3 - diene

D)

1-methylcyclopenta-1, 4-diene

Question 11

Given below are two statements :

Statement I: Upon heating a borax bead dipped in cupric sulphate in a luminous flame, the colour of the bead becomes green

Statement II: The green colour observed is due to the formation of copper(I) metaborate

In light of the above statements, choose the most appropriate answer from the options given below :

Options:

A)

Both Statement I and Statement II are false

B)

Both Statement I and Statement II are rue

C)

Statement I is false but Statement II is true

D)

Statement I is true but Statement II is false

Question 12

In the following halogenated organic compounds, the one with the maximum number of chlorine atoms in its structure is :

Options:

A)

Gammaxene

B)

Chloropicrin

C)

Chloral

D)

Freon-12

Question 13

The incorrect statement for the use of indicators in acid-base titration is :

Options:

A)

Phenolphthalein is a suitable indicator for a weak acid vs strong base titration.

B)

Methyl orange may be used for a weak acid vs weak base titration.

C)

Methyl orange is a suitable indicator for a strong acid vs weak base titration.

D)

Phenolphthalein may be used for a strong acid vs strong base titration.

Numerical TypeQuestion 14

Assume carbon burns according to the following equation :

2C(s)+O2( g)2CO(g)2 \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}(\mathrm{g})

when 12 g12 \mathrm{~g} carbon is burnt in 48 g48 \mathrm{~g} of oxygen, the volume of carbon monoxide produced is ___________ ×101 L\times 10^{-1} \mathrm{~L} at STP [nearest integer]

[Given: Assume CO\mathrm{CO} as ideal gas, Mass of C\mathrm{C} is 12 g mol112 \mathrm{~g} \mathrm{~mol}^{-1}, Mass of O\mathrm{O} is 16 g mol116 \mathrm{~g} \mathrm{~mol}^{-1} and molar volume of an ideal gas at STP is 22.7 L mol122.7 \mathrm{~L} \mathrm{~mol}^{-1} ]

Numerical TypeQuestion 15

The number of molecules which gives the haloform test among the following molecules is ________.

JEE Main 2023 (Online) 31st January Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 43 English

Numerical TypeQuestion 16

Amongst the following, the number of species having the linear shape is _________.

XeF2,I3+,C3O2,I3,CO2,SO2,BeCl2\mathrm{XeF}_{2}, \mathrm{I}_{3}^{+}, \mathrm{C}_{3} \mathrm{O}_{2}, \mathrm{I}_{3}^{-}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{BeCl}_{2} and BCl2\mathrm{BCl}_{2}^{\ominus}

Numerical TypeQuestion 17

Enthalpies of formation of CCl4( g),H2O(g),CO2( g)\mathrm{CCl}_{4}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{CO}_{2}(\mathrm{~g}) and HCl(g)\mathrm{HCl}(\mathrm{g}) are 105,242,394-105,-242,-394 and 92 kJ-92 ~\mathrm{kJ} mol1\mathrm{mol}^{-1} respectively. The magnitude of enthalpy of the reaction given below is _________ kJ mol1\mathrm{kJ} ~\mathrm{mol}^{-1}. (nearest integer)

CCl4( g)+2H2O(g)CO2( g)+4HCl(g)\mathrm{CCl}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{HCl}(\mathrm{g})

Numerical TypeQuestion 18

At 298 K298 \mathrm{~K}, the solubility of silver chloride in water is 1.434×103 g L11.434 \times 10^{-3} \mathrm{~g} \mathrm{~L}^{-1}. The value of logKsp-\log \mathrm{K}_{\mathrm{sp}} for silver chloride is _________.

(Given mass of Ag\mathrm{Ag} is 107.9 g mol1107.9 \mathrm{~g} \mathrm{~mol}^{-1} and mass of Cl\mathrm{Cl} is 35.5 g mol135.5 \mathrm{~g} \mathrm{~mol}^{-1} )

Numerical TypeQuestion 19

The resistivity of a 0.8M0.8 \mathrm{M} solution of an electrolyte is 5×103Ω cm5 \times 10^{-3} \Omega~ \mathrm{cm}.

Its molar conductivity is _________ ×104 Ω1 cm2 mol1\times 10^{4}~ \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}. (Nearest integer)

Numerical TypeQuestion 20

A sample of a metal oxide has formula M0.83O1.00\mathrm{M}_{0.83} \mathrm{O}_{1.00}. The metal M\mathrm{M} can exist in two oxidation states +2+2 and +3+3.

In the sample of M0.83O1.00\mathrm{M}_{0.83} \mathrm{O}_{1.00}, the percentage of metal ions existing in +2+2 oxidation state is __________ %\%. (nearest integer)

Numerical TypeQuestion 21

If the CFSE of [Ti(H2O)6]3+\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} is 96.0 kJ/mol-96.0 \mathrm{~kJ} / \mathrm{mol}, this complex will absorb maximum at wavelength ___________ nm\mathrm{nm}. (nearest integer)

Assume Planck's constant (h) =6.4×1034Js=6.4 \times 10^{-34} \mathrm{Js}, Speed of light (c)=3.0×108 m/s(\mathrm{c})=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} and Avogadro's

Constant (NA)=6×1023/mol\left(\mathrm{N}_{\mathrm{A}}\right)=6 \times 10^{23} / \mathrm{mol}

Numerical TypeQuestion 22

The rate constant for a first order reaction is 20 min120 \mathrm{~min}^{-1}. The time required for the initial concentration of the reactant to reduce to its 132\frac{1}{32} level is _______ ×102 min\times 10^{-2} \mathrm{~min}. (Nearest integer)

(Given : ln10=2.303\ln 10=2.303 and log2=0.3010 ) \log 2=0.3010 \text { )}

Question 23

Let a=i^+2j^+3k^,b=i^j^+2k^\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k} and c=5i^3j^+3k^\vec{c}=5 \hat{i}-3 \hat{j}+3 \hat{k} be three vectors. If r\vec{r} is a vector such that, r×b=c×b\vec{r} \times \vec{b}=\vec{c} \times \vec{b} and ra=0\vec{r} \cdot \vec{a}=0, then 25r225|\vec{r}|^{2} is equal to :

Options:

A)

336

B)

449

C)

339

D)

560

Question 24

Let f:R{2,6}Rf: \mathbb{R}-\{2,6\} \rightarrow \mathbb{R} be real valued function

defined as f(x)=x2+2x+1x28x+12f(x)=\frac{x^2+2 x+1}{x^2-8 x+12}.

Then range of ff is

Options:

A)

(,214][1,) \left(-\infty,-\frac{21}{4}\right] \cup[1, \infty)

B)

(,214)(0,)\left(-\infty,-\frac{21}{4}\right) \cup(0, \infty)

C)

(,214][0,)\left(-\infty,-\frac{21}{4}\right] \cup[0, \infty)

D)

(,214][214,)\left(-\infty,-\frac{21}{4}\right] \cup\left[\frac{21}{4}, \infty\right)

Question 25

The equation e4x+8e3x+13e2x8ex+1=0,xR\mathrm{e}^{4 x}+8 \mathrm{e}^{3 x}+13 \mathrm{e}^{2 x}-8 \mathrm{e}^{x}+1=0, x \in \mathbb{R} has :

Options:

A)

two solutions and both are negative

B)

two solutions and only one of them is negative

C)

four solutions two of which are negative

D)

no solution

Question 26

Let (a, b) (0,2π)\subset(0,2 \pi) be the largest interval for which sin1(sinθ)cos1(sinθ)>0,θ(0,2π)\sin ^{-1}(\sin \theta)-\cos ^{-1}(\sin \theta)>0, \theta \in(0,2 \pi), holds.

If αx2+βx+sin1(x26x+10)+cos1(x26x+10)=0\alpha x^{2}+\beta x+\sin ^{-1}\left(x^{2}-6 x+10\right)+\cos ^{-1}\left(x^{2}-6 x+10\right)=0 and αβ=ba\alpha-\beta=b-a, then α\alpha is equal to :

Options:

A)

π16\frac{\pi}{16}

B)

π48\frac{\pi}{48}

C)

π8\frac{\pi}{8}

D)

π12\frac{\pi}{12}

Question 27

Let α>0\alpha>0. If 0αxx+αx dx=16+20215\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} \mathrm{~d} x=\frac{16+20 \sqrt{2}}{15}, then α\alpha is equal to :

Options:

A)

4

B)

2

C)

222 \sqrt{2}

D)

2\sqrt{2}

Question 28

Let the mean and standard deviation of marks of class A of 100 students be respectively 40 and α(>\alpha(> 0 ), and the mean and standard deviation of marks of class BB of nn students be respectively 55 and 30 α-\alpha. If the mean and variance of the marks of the combined class of 100+n100+\mathrm{n} studants are respectively 50 and 350 , then the sum of variances of classes AA and BB is :

Options:

A)

450

B)

900

C)

650

D)

500

Question 29

Let a1,a2,a3,a_1, a_2, a_3, \ldots be an A.P. If a7=3a_7=3, the product a1a4a_1 a_4 is minimum and the sum of its first nn terms is zero, then n!4an(n+2)n !-4 a_{n(n+2)} is equal to :

Options:

A)

24

B)

3814\frac{381}{4}

C)

9

D)

334\frac{33}{4}

Question 30

The complex number z=i1cosπ3+isinπ3z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}} is equal to :

Options:

A)

cosπ12isinπ12\cos \frac{\pi}{12}-i \sin \frac{\pi}{12}

B)

2(cosπ12+isinπ12)\sqrt{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)

C)

2i(cos5π12isin5π12)\sqrt{2} i\left(\cos \frac{5 \pi}{12}-i \sin \frac{5 \pi}{12}\right)

D)

2(cos5π12+isin5π12)\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)

Question 31

Among the relations

S={(a,b):a,bR{0},2+ab>0}\mathrm{S}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{R}-\{0\}, 2+\frac{\mathrm{a}}{\mathrm{b}}>0\right\}

and T={(a,b):a,bR,a2b2Z}\mathrm{T}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}^{2}-\mathrm{b}^{2} \in \mathbb{Z}\right\},

Options:

A)

S\mathrm{S} is transitive but T\mathrm{T} is not

B)

both S\mathrm{S} and T\mathrm{T} are symmetric

C)

neither SS nor TT is transitive

D)

TT is symmetric but SS is not

Question 32

The absolute minimum value, of the function

f(x)=x2x+1+[x2x+1]f(x)=\left|x^{2}-x+1\right|+\left[x^{2}-x+1\right],

where [t][t] denotes the greatest integer function, in the interval [1,2][-1,2], is :

Options:

A)

34\frac{3}{4}

B)

32\frac{3}{2}

C)

14\frac{1}{4}

D)

54\frac{5}{4}

Question 33

If ϕ(x)=1xπ4x(42sint3ϕ(t))dt,x>0\phi(x)=\frac{1}{\sqrt{x}} \int\limits_{\frac{\pi}{4}}^x\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) d t, x>0,

then (π4)\emptyset^{\prime}\left(\frac{\pi}{4}\right) is equal to :

Options:

A)

46+π\frac{4}{6+\sqrt{\pi}}

B)

46π\frac{4}{6-\sqrt{\pi}}

C)

8π\frac{8}{\sqrt{\pi}}

D)

86+π\frac{8}{6+\sqrt{\pi}}

Question 34

Let H\mathrm{H} be the hyperbola, whose foci are (1±2,0)(1 \pm \sqrt{2}, 0) and eccentricity is 2\sqrt{2}. Then the length of its latus rectum is :

Options:

A)

52\frac{5}{2}

B)

3

C)

2

D)

32\frac{3}{2}

Question 35

limx(3x+1+3x1)6+(3x+13x1)6(x+x21)6+(xx21)6x3 \lim\limits_{x \rightarrow \infty} \frac{(\sqrt{3 x+1}+\sqrt{3 x-1})^6+(\sqrt{3 x+1}-\sqrt{3 x-1})^6}{\left(x+\sqrt{x^2-1}\right)^6+\left(x-\sqrt{x^2-1}\right)^6} x^3

Options:

A)

is equal to 9

B)

is equal to 272\frac{27}{2}

C)

does not exist

D)

is equal to 27

Question 36

Let y=y(x)y=y(x) be the solution of the differential equation

(3y25x2)y dx+2x(x2y2)dy=0\left(3 y^{2}-5 x^{2}\right) y \mathrm{~d} x+2 x\left(x^{2}-y^{2}\right) \mathrm{d} y=0

such that y(1)=1y(1)=1. Then (y(2))312y(2)\left|(y(2))^{3}-12 y(2)\right| is equal to :

Options:

A)

64

B)

16216 \sqrt{2}

C)

32

D)

32232 \sqrt{2}

Question 37

The set of all values of a2a^{2} for which the line x+y=0x+y=0 bisects two distinct chords drawn from a point P(1+a2,1a2)\mathrm{P}\left(\frac{1+a}{2}, \frac{1-a}{2}\right) on the circle 2x2+2y2(1+a)x(1a)y=02 x^{2}+2 y^{2}-(1+a) x-(1-a) y=0, is equal to :

Options:

A)

(0,4](0,4]

B)

(4,)(4, \infty)

C)

(2,12](2,12]

D)

(8,)(8, \infty)

Numerical TypeQuestion 38

Let the area of the region

{(x,y):2x1yx2x,0x1}\left\{(x, y):|2 x-1| \leq y \leq\left|x^{2}-x\right|, 0 \leq x \leq 1\right\} be A\mathrm{A}.

Then (6 A+11)2(6 \mathrm{~A}+11)^{2} is equal to

Numerical TypeQuestion 39

The coefficient of x6x^{-6}, in the

expansion of (4x5+52x2)9\left(\frac{4 x}{5}+\frac{5}{2 x^{2}}\right)^{9}, is

Numerical TypeQuestion 40

Let A=[aij],aijZ[0,4],1i,j2\mathrm{A}=\left[\mathrm{a}_{i j}\right], \mathrm{a}_{i j} \in \mathbb{Z} \cap[0,4], 1 \leq i, j \leq 2.

The number of matrices A such that the sum of all entries is a prime number p(2,13)\mathrm{p} \in(2,13) is __________.

Numerical TypeQuestion 41

If 2n+1Pn1:2n1Pn=11:21{ }^{2 n+1} \mathrm{P}_{n-1}:{ }^{2 n-1} \mathrm{P}_{n}=11: 21,

then n2+n+15n^{2}+n+15 is equal to :

Numerical TypeQuestion 42

Let a,b,c\vec{a}, \vec{b}, \vec{c} be three vectors such that

a=31,4b=c=2|\vec{a}|=\sqrt{31}, 4|\vec{b}|=|\vec{c}|=2 and 2(a×b)=3(c×a)2(\vec{a} \times \vec{b})=3(\vec{c} \times \vec{a}).

If the angle between b\vec{b} and c\vec{c} is 2π3\frac{2 \pi}{3}, then (a×cab)2\left(\frac{\vec{a} \times \vec{c}}{\vec{a} \cdot \vec{b}}\right)^{2} is equal to __________.

Numerical TypeQuestion 43

Let A be the event that the absolute difference between two randomly choosen real numbers in the sample space [0,60][0,60] is less than or equal to a . If P(A)=1136\mathrm{P}(\mathrm{A})=\frac{11}{36}, then a\mathrm{a} is equal to _______.

Numerical TypeQuestion 44

If the constant term in the binomial expansion of (x5224xl)9\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^{l}}\right)^{9} is 84-84 and the coefficient of x3lx^{-3 l} is 2αβ2^{\alpha} \beta, where β<0\beta<0 is an odd number, then αlβ|\alpha l-\beta| is equal to ________.

Question 45

For a solid rod, the Young's modulus of elasticity is 3.2×1011Nm23.2 \times 10^{11} \mathrm{Nm}^{-2} and density is 8×103 kg m38 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}. The velocity of longitudinal wave in the rod will be.

Options:

A)

3.65×103 ms13.65 \times 10^3 \mathrm{~ms}^{-1}

B)

6.32×103 ms16.32 \times 10^3 \mathrm{~ms}^{-1}

C)

18.96×103 ms118.96 \times 10^3 \mathrm{~ms}^{-1}

D)

145.75×103 ms1145.75 \times 10^3 \mathrm{~ms}^{-1}

Question 46

Heat energy of 735 J735 \mathrm{~J} is given to a diatomic gas allowing the gas to expand at constant pressure. Each gas molecule rotates around an internal axis but do not oscillate. The increase in the internal energy of the gas will be :

Options:

A)

572 J572 \mathrm{~J}

B)

441 J441 \mathrm{~J}

C)

525 J525 \mathrm{~J}

D)

735 J735 \mathrm{~J}

Question 47

The radius of electron's second stationary orbit in Bohr's atom is R. The radius of 3rd orbit will be

Options:

A)

2.25R

B)

3R3 \mathrm{R}

C)

R3\frac{\mathrm{R}}{3}

D)

9R9 \mathrm{R}

Question 48

If the two metals A\mathrm{A} and B\mathrm{B} are exposed to radiation of wavelength 350 nm350 \mathrm{~nm}. The work functions of metals A\mathrm{A} and B\mathrm{B} are 4.8eV4.8 \mathrm{eV} and 2.2eV2.2 \mathrm{eV}. Then choose the correct option.

Options:

A)

Metal B will not emit photo-electrons

B)

Both metals A\mathrm{A} and B\mathrm{B} will not emit photo-electrons

C)

Metal A will not emit photo-electrons

D)

Both metals A and B will emit photo-electrons

Question 49

The number of turns of the coil of a moving coil galvanometer is increased in order to increase current sensitivity by 50%50 \%. The percentage change in voltage sensitivity of the galvanometer will be :

Options:

A)

0%0 \%

B)

75%75 \%

C)

100%100 \%

D)

50%50 \%

Question 50

Match List I with List II

LIST I LIST II
A. Microwaves I. Physiotherapy
B. UV rays II. Treatment of cancer
C. Infra-red light III. Lasik eye surgery
D. X-ray IV. Aircraft navigation

Choose the correct answer from the options given below:

Options:

A)

A - IV, B - III, C - I, D - II

B)

A - II, B - IV, C - III, D - I

C)

A - III, B - II, C - I, D - IV

D)

A - IV, B - I, C - II, D - III

Question 51

The H\mathrm{H} amount of thermal energy is developed by a resistor in 10 s10 \mathrm{~s} when a current of 4 A4 \mathrm{~A} is passed through it. If the current is increased to 16 A16 \mathrm{~A}, the thermal energy developed by the resistor in 10 s10 \mathrm{~s} will be :

Options:

A)

H4\frac{\mathrm{H}}{4}

B)

16H16 \mathrm{H}

C)

H

D)

4H4 \mathrm{H}

Question 52

A body weight W\mathrm{W}, is projected vertically upwards from earth's surface to reach a height above the earth which is equal to nine times the radius of earth. The weight of the body at that height will be :

Options:

A)

W91\frac{W}{91}

B)

W3\frac{\mathrm{W}}{3}

C)

W100\frac{\mathrm{W}}{100}

D)

W9\frac{\mathrm{W}}{9}

Question 53

Considering a group of positive charges, which of the following statements is correct ?

Options:

A)

Net potential of the system cannot be zero at a point but net electric field can be zero at that point

B)

Net potential of the system at a point can be zero but net electric field can't be zero at that point.

C)

Both the net potential and the net electric field cannot be zero at a point.

D)

Both the net potential and the net field can be zero at a point.

Question 54

A body of mass 10 kg10 \mathrm{~kg} is moving with an initial speed of 20 m/s20 \mathrm{~m} / \mathrm{s}. The body stops after 5 s5 \mathrm{~s} due to friction between body and the floor. The value of the coefficient of friction is:

(Take acceleration due to gravity g=10 ms2g=10 \mathrm{~ms}^{-2} )

Options:

A)

0.3

B)

0.2

C)

0.5

D)

0.4

Question 55

A hypothetical gas expands adiabatically such that its volume changes from 08 litres to 27 litres. If the ratio of final pressure of the gas to initial pressure of the gas is 1681\frac{16}{81}. Then the ratio of CpCv\frac{\mathrm{Cp}}{\mathrm{Cv}} will be.

Options:

A)

31\frac{3}{1}

B)

43\frac{4}{3}

C)

12\frac{1}{2}

D)

32\frac{3}{2}

Question 56

A long conducting wire having a current I flowing through it, is bent into a circular coil of N\mathrm{N} turns. Then it is bent into a circular coil of n\mathrm{n} turns. The magnetic field is calculated at the centre of coils in both the cases. The ratio of the magnetic field in first case to that of second case is :

Options:

A)

N2:n2 N^{2}: n^{2}

B)

N:n\mathrm{N}: \mathrm{n}

C)

n:N\mathrm{n}: \mathrm{N}

D)

n2:N2n^{2}: N^{2}

Question 57

A microscope is focused on an object at the bottom of a bucket. If liquid with refractive index 53\frac{5}{3} is poured inside the bucket, then the microscope has to be raised by 30 cm30 \mathrm{~cm} to focus the object again. The height of the liquid in the bucket is :

Options:

A)

50 cm50 \mathrm{~cm}

B)

18 cm18 \mathrm{~cm}

C)

75 cm75 \mathrm{~cm}

D)

12 cm12 \mathrm{~cm}

Question 58

Match List I with List II

LIST I LIST II
A. Angular momentum I. [ML2 T2]\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]
B. Torque II. [ML2 T2]\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]
C. Stress III [ML2 T1]\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]
D. Pressure gradient IV. [ML1 T2]\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]

Choose the correct answer from the options given below:

Options:

A)

A - I, B - IV, C - III, D - II

B)

A - III, B - I, C - IV, D - II

C)

A - IV, B - II, C - I, D - III

D)

A - II, B - III, C - IV, D - I

Question 59

Under the same load, wire A having length 5.0 m5.0 \mathrm{~m} and cross section 2.5×105 m22.5 \times 10^{-5} \mathrm{~m}^{2} stretches uniformly by the same amount as another wire B of length 6.0 m6.0 \mathrm{~m} and a cross section of 3.0×1053.0 \times 10^{-5} m2\mathrm{m}^{2} stretches. The ratio of the Young's modulus of wire A to that of wire BB will be :

Options:

A)

1:21: 2

B)

1:41: 4

C)

1:11: 1

D)

1:101: 10

Question 60

An alternating voltage source V=260sin(628t\mathrm{V}=260 \sin (628 \mathrm{t} ) is connected across a pure inductor of 5mH5 \mathrm{mH} Inductive reactance in the circuit is :

Options:

A)

6.28Ω6.28 \Omega

B)

0.318Ω0.318 \Omega

C)

0.5Ω0.5 \Omega

D)

3.14Ω3.14 \Omega

Question 61

A stone of mass 1 kg1 \mathrm{~kg} is tied to end of a massless string of length 1 m1 \mathrm{~m}. If the breaking tension of the string is 400 N400 \mathrm{~N}, then maximum linear velocity, the stone can have without breaking the string, while rotating in horizontal plane, is :

Options:

A)

20 ms120 \mathrm{~ms}^{-1}

B)

40 ms140 \mathrm{~ms}^{-1}

C)

400 ms1400 \mathrm{~ms}^{-1}

D)

10 ms110 \mathrm{~ms}^{-1}

Question 62

A body is moving with constant speed, in a circle of radius 10 m10 \mathrm{~m}. The body completes one revolution in 4 s4 \mathrm{~s}. At the end of 3rd second, the displacement of body (in m\mathrm{m} ) from its starting point is :

Options:

A)

15π15 \pi

B)

30

C)

10210 \sqrt{2}

D)

5π5 \pi

Numerical TypeQuestion 63

A water heater of power 2000 W2000 \mathrm{~W} is used to heat water. The specific heat capacity of water is 4200 J4200 \mathrm{~J} kg1 K1\mathrm{kg}^{-1} \mathrm{~K}^{-1}. The efficiency of heater is 70%70 \%. Time required to heat 2 kg2 \mathrm{~kg} of water from 10C10^{\circ} \mathrm{C} to 60C60^{\circ} \mathrm{C} is _________ s.

(Assume that the specific heat capacity of water remains constant over the temperature range of the water).

Numerical TypeQuestion 64

A series LCR\mathrm{LCR} circuit consists of R=80Ω,XL=100Ω\mathrm{R}=80 \Omega, \mathrm{X}_{\mathrm{L}}=100 \Omega, and XC=40Ω\mathrm{X}_{\mathrm{C}}=40 \Omega. The input

voltage is 2500 cos(100πt)V\cos (100 \pi \mathrm{t}) \mathrm{V}. The amplitude of current, in the circuit, is _________ A.

Numerical TypeQuestion 65

Two light waves of wavelengths 800 and 600 nm600 \mathrm{~nm} are used in Young's double slit experiment to obtain interference fringes on a screen placed 7 m7 \mathrm{~m} away from plane of slits. If the two slits are separated by 0.35 mm0.35 \mathrm{~mm}, then shortest distance from the central bright maximum to the point where the bright fringes of the two wavelength coincide will be ______ mm\mathrm{mm}.

Numerical TypeQuestion 66

Two bodies are projected from ground with same speeds 40 ms140 \mathrm{~ms}^{-1} at two different angles with respect to horizontal. The bodies were found to have same range. If one of the body was projected at an angle of 6060^{\circ}, with horizontal then sum of the maximum heights, attained by the two projectiles, is m\mathrm{m}. (Given g=10 ms2\mathrm{g}=10 \mathrm{~ms}^{-2} )

Numerical TypeQuestion 67

The displacement equations of two interfering waves are given by

y1=10sin(ωt+π3)cm,y2=5[sinωt+3cosωt]cmy_{1}=10 \sin \left(\omega t+\frac{\pi}{3}\right) \mathrm{cm}, y_{2}=5[\sin \omega t+\sqrt{3} \cos \omega t] \mathrm{cm} respectively.

The amplitude of the resultant wave is _______ cm\mathrm{cm}.

Numerical TypeQuestion 68

For the given circuit, in the steady state, VBVD=\left|\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}\right|= ________ V.

JEE Main 2023 (Online) 31st January Evening Shift Physics - Capacitor Question 26 English

Numerical TypeQuestion 69

Two discs of same mass and different radii are made of different materials such that their thicknesses are 1 cm1 \mathrm{~cm} and 0.5 cm0.5 \mathrm{~cm} respectively. The densities of materials are in the ratio 3:53: 5. The moment of inertia of these discs respectively about their diameters will be in the ratio of x6\frac{x}{6}. The value of xx is ________.

Numerical TypeQuestion 70

A ball is dropped from a height of 20 m20 \mathrm{~m}. If the coefficient of restitution for the collision between ball and floor is 0.50.5, after hitting the floor, the ball rebounds to a height of ________ m\mathrm{m}.

Numerical TypeQuestion 71

If the binding energy of ground state electron in a hydrogen atom is 13.6eV13.6\, \mathrm{eV}, then, the energy required to remove the electron from the second excited state of Li2+\mathrm{Li}^{2+} will be : x×101eVx \times 10^{-1} \mathrm{eV}. The value of xx is ________.

Numerical TypeQuestion 72

Two parallel plate capacitors C1C_{1} and C2C_{2} each having capacitance of 10μF10 \mu \mathrm{F} are individually charged by a 100 V D.C. source. Capacitor C1C_{1} is kept connected to the source and a dielectric slab is inserted between it plates. Capacitor C2\mathrm{C}_{2} is disconnected from the source and then a dielectric slab is inserted in it. Afterwards the capacitor C1C_{1} is also disconnected from the source and the two capacitors are finally connected in parallel combination. The common potential of the combination will be ________ V.

(Assuming Dielectric constant =10=10 )