Jeehub Logo

Jan 31, 2023

JEE Mains

Shift: 1

Total Questions Available: 74

Question 1

Nd2+\mathrm{Nd^{2+}} = __________

Options:

A)

4f46s2\mathrm{4f^4 6s^2}

B)

4f3\mathrm{4f^3}

C)

4f4\mathrm{4f^4}

D)

4f26s2\mathrm{4f^2 6s^2}

Question 2

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Compounds Containing Nitrogen Question 41 English

Consider the above reaction and identify the product B.

Options:

A)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Compounds Containing Nitrogen Question 41 English Option 1

B)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Compounds Containing Nitrogen Question 41 English Option 2

C)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Compounds Containing Nitrogen Question 41 English Option 3

D)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Compounds Containing Nitrogen Question 41 English Option 4

Question 3

Which one of the following statements is correct for electrolysis of brine solution?

Options:

A)

O2\mathrm{O}_{2} is formed at cathode

B)

H2\mathrm{H}_{2} is formed at anode

C)

Cl2\mathrm{Cl}_{2} is formed at cathode

D)

OH\mathrm{OH}^{-} is formed at cathode

Numerical TypeQuestion 4

The oxidation state of phosphorus in hypophosphoric acid is + _____________.

Numerical TypeQuestion 5

A \to B

The rate constants of the above reaction at 200 K and 300 K are 0.03 min1^{-1} and 0.05 min1^{-1} respectively. The activation energy for the reaction is ___________ J (Nearest integer)

(Given : ln10=2.3\mathrm{ln10=2.3}

R=8.3 J K1 mol1\mathrm{R=8.3~J~K^{-1}~mol^{-1}}

log5=0.70\mathrm{\log5=0.70}

log3=0.48\mathrm{\log3=0.48}

log2=0.30\mathrm{\log2=0.30})

Question 6

For the system of linear equations

x+y+z=6x+y+z=6

αx+βy+7z=3\alpha x+\beta y+7 z=3

x+2y+3z=14x+2 y+3 z=14

which of the following is NOT true ?

Options:

A)

If α=β=7\alpha=\beta=7, then the system has no solution

B)

For every point (α,β)(7,7)(\alpha, \beta) \neq(7,7) on the line x2y+7=0x-2 y+7=0, the system has infinitely many solutions

C)

There is a unique point (α,β)(\alpha, \beta) on the line x+2y+18=0x+2 y+18=0 for which the system has infinitely many solutions

D)

If α=β\alpha=\beta and α7\alpha \neq 7, then the system has a unique solution

Question 7

When Cu2+\mathrm{Cu}^{2+} ion is treated with KI\mathrm{KI}, a white precipitate, X\mathrm{X} appears in solution. The solution is titrated with sodium thiosulphate, the compound Y\mathrm{Y} is formed. X\mathrm{X} and Y\mathrm{Y} respectively are :

Options:

A)

X=CuI2\mathrm{X=CuI_2} Y=Na2S4O6\mathrm{Y=Na_2S_4O_6}

B)

X=Cu2I2\mathrm{X=Cu_2I_2} Y=Na2S4O6\mathrm{Y=Na_2S_4O_6}

C)

X=CuI2\mathrm{X=CuI_2} Y=Na2S2O3\mathrm{Y=Na_2S_2O_3}

D)

X=Cu2I2\mathrm{X=Cu_2I_2} Y=Na2S4O5\mathrm{Y=Na_2S_4O_5}

Question 8

A protein 'X\mathrm{X}' with molecular weight of 70,000 u70,000 \mathrm{~u}, on hydrolysis gives amino acids. One of these amino acid is

Options:

A)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Biomolecules Question 30 English Option 1

B)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Biomolecules Question 30 English Option 2

C)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Biomolecules Question 30 English Option 3

D)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Biomolecules Question 30 English Option 4

Question 9

Match List I with List II

List I List II
A. XeF4\mathrm{XeF_4} I. See-saw
B. SF4\mathrm{SF_4} II. Square-planar
C. NH4+\mathrm{NH_{4}^{+}} III. Bent T-shaped
D. BrF3\mathrm{BrF_3} IV. Tetrahedral

Choose the correct answer from the options given below :

Options:

A)

A - II, B - I, C - III, D - IV

B)

A - II, B - I, C - IV, D - III

C)

A - IV, B - I, C - II, D - III

D)

A - IV, B - III, C - II, D - I

Numerical TypeQuestion 10

The logarithm of equilibrium constant for the reaction Pd2++4ClPdCl42\mathrm{Pd}^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{PdCl}_{4}^{2-} is ___________ (Nearest integer)

Given : 2.303R T F=0.06 V\frac{2.303 R \mathrm{~T}}{\mathrm{~F}}=0.06 \mathrm{~V}

Pd(aq)2++2ePd(s)E=0.83 V \mathrm{Pd}_{(\mathrm{aq})}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pd}(\mathrm{s}) \quad \mathrm{E}^{\ominus}=0.83 \mathrm{~V}

PdCl42(aq)+2ePd(s)+4Cl(aq)E=0.65 V \begin{aligned} & \mathrm{PdCl}_{4}^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pd}(\mathrm{s})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \mathrm{E}^{\ominus}=0.65 \mathrm{~V} \end{aligned}

Numerical TypeQuestion 11

The enthalpy change for the conversion of 12Cl2( g)\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) to Cl\mathrm{Cl}^{-}(aq) is (-) ___________ kJmol1\mathrm{kJ} \mathrm{mol}^{-1} (Nearest integer)

Given : ΔdisHCl2( g)θ=240 kJ mol1,ΔegHCl(g)=350 kJ mol1\Delta_{\mathrm{dis}} \mathrm{H}_{\mathrm{Cl}_{2(\mathrm{~g})}^{\theta}}^{\ominus}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\mathrm{eg}} \mathrm{H}_{\mathrm{Cl_{(g)}}}^{\ominus}=-350 \mathrm{~kJ} \mathrm{~mol}^{-1},

ΔhydHCl(g)Θ=380{\mathrm{\Delta _{hyd}}H_{Cl_{(g)}^ - }^\Theta = - 380} kJ mol1\mathrm{kJ~mol^{-1}}

Numerical TypeQuestion 12

How many of the transformations given below would result in aromatic amines?

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Compounds Containing Nitrogen Question 42 English

Numerical TypeQuestion 13

For reaction : SO2( g)+12O2( g)SO3( g)\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})

Kp=2×1012\mathrm{K}_{\mathrm{p}}=2 \times 10^{12} at 27C27^{\circ} \mathrm{C} and 1 atm1 \mathrm{~atm} pressure. The Kc\mathrm{K}_{\mathrm{c}} for the same reaction is ____________ ×1013\times 10^{13}. (Nearest integer)

(Given R=0.082 L atm K1 mol1\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1})

Question 14

The correct increasing order of the ionic radii is

Options:

A)

Cl<Ca2+<K+<S2\mathrm{Cl^- < Ca^{2+} < K^+ < S^{2-}}

B)

K+<S2<Ca2+<Cl\mathrm{K^+ < S^{2-} < Ca^{2+} < Cl^-}

C)

Ca2+<K+<Cl<S2\mathrm{Ca^{2+} < K^+ < Cl^- < S^{2-}}

D)

S2<Cl<Ca2+<K+\mathrm{S^{2-} < Cl^- < Ca^{2+} < K^+}

Question 15

The correct order of melting points of dichlorobenzenes is

Options:

A)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 32 English Option 1

B)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 32 English Option 2

C)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 32 English Option 3

D)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 32 English Option 4

Question 16

Cobalt chloride when dissolved in water forms pink colored complex X\underline{\mathrm{X}} which has octahedral geometry. This solution on treating with conc HCl\mathrm{HCl} forms deep blue complex, Y\underline{\mathrm{Y}} which has a Z\underline{\mathrm{Z}} geometry. X,Y\mathrm{X}, \mathrm{Y} and Z\mathrm{Z}, respectively, are

Options:

A)

X=[Co(H2O)6]2+,Y=[CoCl4]2,Z=\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{Y}=\left[\mathrm{CoCl}_{4}\right]^{2-}, \mathrm{Z}= Tetrahedral

B)

X=[Co(H2O)6]2+,Y=[CoCl6]3,Z=\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{Y}=\left[\mathrm{CoCl}_{6}\right]^{3-}, \mathrm{Z}= Octahedral

C)

X=[Co(H2O)4Cl2]+,Y=[CoCl4]2,Z=\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}, \mathrm{Y}=\left[\mathrm{CoCl}_{4}\right]^{2-}, \mathrm{Z}= Tetrahedral

D)

X=[Co(H2O)6]3+,Y=[CoCl6]3,Z=\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}, \mathrm{Y}=\left[\mathrm{CoCl}_{6}\right]^{3-}, \mathrm{Z}= Octahedral

Question 17

An organic compound 'A' with emperical formula C6H6O\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O} gives sooty flame on burning. Its reaction with bromine solution in low polarity solvent results in high yield of B. B is

Options:

A)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 38 English Option 1

B)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 38 English Option 2

C)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 38 English Option 3

D)

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 38 English Option 4

Numerical TypeQuestion 18

Zinc reacts with hydrochloric acid to give hydrogen and zinc chloride. The volume of hydrogen gas produced at STP from the reaction of 11.5 g11.5 \mathrm{~g} of zinc with excess HCl\mathrm{HCl} is __________ L (Nearest integer)

(Given : Molar mass of Zn\mathrm{Zn} is 65.4 g mol165.4 \mathrm{~g} \mathrm{~mol}^{-1} and Molar volume of H2\mathrm{H}_{2} at STP=22.7 L\mathrm{STP}=22.7 \mathrm{~L} )

Question 19

The number of real roots of the equation x24x+3+x29=4x214x+6\sqrt{x^{2}-4 x+3}+\sqrt{x^{2}-9}=\sqrt{4 x^{2}-14 x+6}, is :

Options:

A)

0

B)

1

C)

3

D)

2

Question 20

Match items of column I and II

Column I (Mixture of compounds) Column II (Separation Technique)
A. H2O/CH2Cl2\mathrm{H_2O/CH_2Cl_2} i. Crystalization
B. JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Basics of Organic Chemistry Question 51 English ii. Differential solvent extraction
C. Kerosene / Naphthalene iii. Column chromatography
D. C6H12O6/NaCl\mathrm{C_6H_{12}O_6/NaCl} iv. Fractional Distillation

Correct match is

Options:

A)

A-(ii), B-(iv), C-(i), D-(iii)

B)

A-(iii), B-(iv), C-(ii), D-(i)

C)

A-(i), B-(iii), C-(ii), D-(iv)

D)

A-(ii), B-(iii), C-(iv), D-(i)

Question 21

Consider the following reaction

JEE Main 2023 (Online) 31st January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 41 English

The correct statement for product B is. It is

Options:

A)

racemic mixture and is neutral

B)

optically active and adds one mole of bromine

C)

racemic mixture and gives a gas with saturated NaHCO3\mathrm{NaHCO}_{3} solution

D)

optically active alcohol and is neutral

Question 22

The correct order of basicity of oxides of vanadium is :

Options:

A)

V2O3>V2O5>V2O4\mathrm{V_2O_3 > V_2O_5 > V_2O_4}

B)

V2O3>V2O4>V2O5\mathrm{V_2O_3 > V_2O_4 > V_2O_5}

C)

V2O5>V2O4>V2O3\mathrm{V_2O_5 > V_2O_4 > V_2O_3}

D)

V2O4>V2O3>V2O5\mathrm{V_2O_4 > V_2O_3 > V_2O_5}

Question 23

Choose the correct set of reagents for the following conversion.

trans (PhCH=CHCH3)cis(PhCH=CHCH3)\left(\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right) \rightarrow \operatorname{cis}\left(\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right)

Options:

A)

Br2,alcKOH,NaNH2,H2\mathrm{Br_2,alc\cdot KOH,NaNH_2,H_2} Lindlar Catalyst

B)

Br2,aqKOH,NaNH2,Na\mathrm{Br_2,aq\cdot KOH,NaNH_2,Na} (Liq NH3_3)

C)

Br2,alcKOH,NaNH2,Na\mathrm{Br_2,alc\cdot KOH,NaNH_2,Na} (Liq NH3_3)

D)

Br2,aqKOH,NaNH2,H2\mathrm{Br_2,aq\cdot KOH,NaNH_2,H_2} Lindlar Catalyst

Question 24

Which transition in the hydrogen spectrum would have the same wavelength as the Balmer type transition from n=4\mathrm{n=4} to n=2\mathrm{n}=2 of He+\mathrm{He}^{+} spectrum

Options:

A)

n=3\mathrm{n}=3 to n=4\mathrm{n}=4

B)

n=2\mathrm{n}=2 to n=1\mathrm{n}=1

C)

n=1\mathrm{n}=1 to n=2\mathrm{n}=2

D)

n=1\mathrm{n}=1 to n=3\mathrm{n}=3

Numerical TypeQuestion 25

On complete combustion, 0.492 g0.492 \mathrm{~g} of an organic compound gave 0.792 g0.792 \mathrm{~g} of CO2\mathrm{CO}_{2}. The % of carbon in the organic compound is ___________ (Nearest integer)

Numerical TypeQuestion 26

At 27C27^{\circ} \mathrm{C}, a solution containing 2.5 g2.5 \mathrm{~g} of solute in 250.0 mL250.0 \mathrm{~mL} of solution exerts an osmotic pressure of 400 Pa400 \mathrm{~Pa}. The molar mass of the solute is ___________ g mol1\mathrm{g} \mathrm{~mol}^{-1} (Nearest integer)

(Given : R=0.083 L bar K1 mol1\mathrm{R}=0.083 \mathrm{~L} \mathrm{~bar} \mathrm{~K}^{-1} \mathrm{~mol}^{-1})

Question 27

A bag contains 6 balls. Two balls are drawn from it at random and both are found to be black. The probability that the bag contains at least 5 black balls is :

Options:

A)

37\frac{3}{7}

B)

56\frac{5}{6}

C)

57\frac{5}{7}

D)

27\frac{2}{7}

Question 28

If sin1α17+cos145tan17736=0,0<α<13{\sin ^{ - 1}}{\alpha \over {17}} + {\cos ^{ - 1}}{4 \over 5} - {\tan ^{ - 1}}{{77} \over {36}} = 0,0 < \alpha < 13, then sin1(sinα)+cos1(cosα){\sin ^{ - 1}}(\sin \alpha ) + {\cos ^{ - 1}}(\cos \alpha ) is equal to :

Options:

A)

16

B)

π\pi

C)

16 - 5π\pi

D)

0

Question 29

If the sum and product of four positive consecutive terms of a G.P., are 126 and 1296 , respectively, then the sum of common ratios of all such GPs is

Options:

A)

7

B)

14

C)

3

D)

92\frac{9}{2}

Question 30

Let R\mathrm{R} be a relation on N×N\mathrm{N} \times \mathbb{N} defined by (a,b) R (c,d)(a, b) ~\mathrm{R}~(c, d) if and only if ad(bc)=bc(ad)a d(b-c)=b c(a-d). Then R\mathrm{R} is

Options:

A)

symmetric and transitive but not reflexive

B)

reflexive and symmetric but not transitive

C)

transitive but neither reflexive nor symmetric

D)

symmetric but neither reflexive nor transitive

Question 31

A wire of length 20 m20 \mathrm{~m} is to be cut into two pieces. A piece of length l1l_{1} is bent to make a square of area A1A_{1} and the other piece of length l2l_{2} is made into a circle of area A2A_{2}. If 2A1+3A22 A_{1}+3 A_{2} is minimum then (πl1):l2\left(\pi l_{1}\right): l_{2} is equal to :

Options:

A)

6 : 1

B)

1 : 6

C)

4 : 1

D)

3 : 1

Question 32

If the domain of the function f(x)=[x]1+x2f(x)=\frac{[x]}{1+x^{2}}, where [x][x] is greatest integer x\leq x, is [2,6)[2,6), then its range is

Options:

A)

(537,25]{929,27109,1889,953}\left(\frac{5}{37}, \frac{2}{5}\right]-\left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}

B)

(537,25]\left(\frac{5}{37}, \frac{2}{5}\right]

C)

(526,25]\left(\frac{5}{26}, \frac{2}{5}\right]

D)

(526,25]{929,27109,1889,953}\left(\frac{5}{26}, \frac{2}{5}\right]-\left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}

Question 33

Let A = \left( {\matrix{ 1 & 0 & 0 \cr 0 & 4 & { - 1} \cr 0 & {12} & { - 3} \cr } } \right)\(. Then the sum of the diagonal elements of the matrix \){(A + I)^{11}} is equal to :

Options:

A)

4094

B)

2050

C)

6144

D)

4097

Question 34

The value of \int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x is equal to :

Options:

A)

1033+loge3\frac{10}{3}-\sqrt{3}+\log _{e} \sqrt{3}

B)

723loge3\frac{7}{2}-\sqrt{3}-\log _{e} \sqrt{3}

C)

1033loge3\frac{10}{3}-\sqrt{3}-\log _{e} \sqrt{3}

D)

2+33+loge3-2+3\sqrt{3}+\log _{e} \sqrt{3}

Question 35

Let y=f(x)=sin3(π3(cos(π32(4x3+5x2+1)32)))y=f(x)=\sin ^{3}\left(\frac{\pi}{3}\left(\cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{\frac{3}{2}}\right)\right)\right). Then, at x = 1,

Options:

A)

2y+3π2y=02 y^{\prime}+\sqrt{3} \pi^{2} y=0

B)

y+3π2y=0y^{\prime}+3 \pi^{2} y=0

C)

2y3π2y=0\sqrt{2} y^{\prime}-3 \pi^{2} y=0

D)

2y+3π2y=02 y^{\prime}+3 \pi^{2} y=0

Question 36

The effect of increase in temperature on the number of electrons in conduction band (ne\mathrm{n_e}) and resistance of a semiconductor will be as:

Options:

A)

ne\mathrm{n}_{\mathrm{e}} decreases, resistance increases

B)

Both ne\mathrm{n}_{\mathrm{e}} and resistance increase

C)

ne\mathrm{n}_{\mathrm{e}} increases, resistance decreases

D)

Both ne\mathrm{n}_{\mathrm{e}} and resistance decrease

Question 37

The drift velocity of electrons for a conductor connected in an electrical circuit is Vd\mathrm{V}_{\mathrm{d}}. The conductor in now replaced by another conductor with same material and same length but double the area of cross section. The applied voltage remains same. The new drift velocity of electrons will be

Options:

A)

Vd4\frac{V_{d}}{4}

B)

Vd\mathrm{V}_{\mathrm{d}}

C)

2 Vd2 \mathrm{~V}_{\mathrm{d}}

D)

Vd2\frac{V_{d}}{2}

Question 38

The pressure of a gas changes linearly with volume from A\mathrm{A} to B\mathrm{B} as shown in figure. If no heat is supplied to or extracted from the gas then change in the internal energy of the gas will be

JEE Main 2023 (Online) 31st January Morning Shift Physics - Heat and Thermodynamics Question 68 English

Options:

A)

6 J

B)

4.5 J

C)

zero

D)

-4.5 J

Numerical TypeQuestion 39

In the figure given below, a block of mass M=490 gM=490 \mathrm{~g} placed on a frictionless table is connected with two springs having same spring constant (K=2 N m1)\left(\mathrm{K}=2 \mathrm{~N} \mathrm{~m}^{-1}\right). If the block is horizontally displaced through 'X\mathrm{X}' m\mathrm{m} then the number of complete oscillations it will make in 14π14 \pi seconds will be _____________.

JEE Main 2023 (Online) 31st January Morning Shift Physics - Simple Harmonic Motion Question 29 English

Numerical TypeQuestion 40

An inductor of 0.5 mH0.5 ~\mathrm{mH}, a capacitor of 20 μF20 ~\mu \mathrm{F} and resistance of 20 Ω20 ~\Omega are connected in series with a 220 V220 \mathrm{~V} ac source. If the current is in phase with the emf, the amplitude of current of the circuit is x\sqrt{x} A. The value of xx is ___________

Question 41

For all zCz \in C on the curve C1:z=4C_{1}:|z|=4, let the locus of the point z+1zz+\frac{1}{z} be the curve C2\mathrm{C}_{2}. Then :

Options:

A)

the curves C1C_{1} and C2C_{2} intersect at 4 points

B)

the curve C2C_{2} lies inside C1C_{1}

C)

the curve C1C_{1} lies inside C2C_{2}

D)

the curves C1C_{1} and C2C_{2} intersect at 2 points

Numerical TypeQuestion 42

Let 5 digit numbers be constructed using the digits 0,2,3,4,7,90,2,3,4,7,9 with repetition allowed, and are arranged in ascending order with serial numbers. Then the serial number of the number 42923 is __________.

Numerical TypeQuestion 43

Let α>0\alpha>0, be the smallest number such that the expansion of (x23+2x3)30\left(x^{\frac{2}{3}}+\frac{2}{x^{3}}\right)^{30} has a term βxα,βN\beta x^{-\alpha}, \beta \in \mathbb{N}. Then α\alpha is equal to ___________.

Numerical TypeQuestion 44

Let a\vec{a} and b\vec{b} be two vectors such that a=14,b=6|\vec{a}|=\sqrt{14},|\vec{b}|=\sqrt{6} and a×b=48|\vec{a} \times \vec{b}|=\sqrt{48}. Then (ab)2(\vec{a} \cdot \vec{b})^{2} is equal to ___________.

Numerical TypeQuestion 45

If the variance of the frequency distribution

xix_i 2 3 4 5 6 7 8
Frequency fif_i 3 6 16 α\alpha 9 5 6

is 3, then α\alpha is equal to _____________.

Question 46

A bar magnet with a magnetic moment 5.0Am25.0 \mathrm{Am}^{2} is placed in parallel position relative to a magnetic field of 0.4 T0.4 \mathrm{~T}. The amount of required work done in turning the magnet from parallel to antiparallel position relative to the field direction is _____________.

Options:

A)

zero

B)

1 J

C)

2 J

D)

4 J

Question 47

Which of the following correctly represents the variation of electric potential (V)(\mathrm{V}) of a charged spherical conductor of radius (R)(\mathrm{R}) with radial distance (r)(\mathrm{r}) from the center?

Options:

A)

JEE Main 2023 (Online) 31st January Morning Shift Physics - Electrostatics Question 49 English Option 1

B)

JEE Main 2023 (Online) 31st January Morning Shift Physics - Electrostatics Question 49 English Option 2

C)

JEE Main 2023 (Online) 31st January Morning Shift Physics - Electrostatics Question 49 English Option 3

D)

JEE Main 2023 (Online) 31st January Morning Shift Physics - Electrostatics Question 49 English Option 4

Question 48

A rod with circular cross-section area 2 cm22 \mathrm{~cm}^{2} and length 40 cm40 \mathrm{~cm} is wound uniformly with 400 turns of an insulated wire. If a current of 0.4 A0.4 \mathrm{~A} flows in the wire windings, the total magnetic flux produced inside windings is 4π×106 Wb4 \pi \times 10^{-6} \mathrm{~Wb}. The relative permeability of the rod is

(Given : Permeability of vacuum μ0=4π×107NA2\mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2})

Options:

A)

516\frac{5}{16}

B)

125

C)

325\frac{32}{5}

D)

12.5

Question 49

At a certain depth "d " below surface of earth, value of acceleration due to gravity becomes four times that of its value at a height 3R\mathrm{3 R} above earth surface. Where R\mathrm{R} is Radius of earth (Take R=6400 km\mathrm{R}=6400 \mathrm{~km} ). The depth d\mathrm{d} is equal to

Options:

A)

5260 km

B)

2560 km

C)

640 km

D)

4800 km

Question 50

100 balls each of mass m\mathrm{m} moving with speed vv simultaneously strike a wall normally and reflected back with same speed, in time t s\mathrm{t ~s}. The total force exerted by the balls on the wall is

Options:

A)

200mvt\frac{200 m v}{t}

B)

100mvt\frac{100 m v}{t}

C)

mv100t\frac{m v}{100 t}

D)

200mvt200 m v t

Question 51

If R,XL\mathrm{R}, \mathrm{X}_{\mathrm{L}}, and XC\mathrm{X}_{\mathrm{C}} represent resistance, inductive reactance and capacitive reactance. Then which of the following is dimensionless :

Options:

A)

RXLXC\frac{R}{X_{L} X_{C}}

B)

RXLXCR X_{L} X_{C}

C)

RXLXC\frac{R}{\sqrt{X_{L} X_{C}}}

D)

RXLXCR \frac{X_{L}}{X_{C}}

Question 52

The maximum potential energy of a block executing simple harmonic motion is 25 J25 \mathrm{~J}. A is amplitude of oscillation. At A/2\mathrm{A / 2}, the kinetic energy of the block is

Options:

A)

9.75 J

B)

37.5 J

C)

18.75 J

D)

12.5 J

Question 53

As shown in figure, a 70 kg70 \mathrm{~kg} garden roller is pushed with a force of F=200 N\vec{F}=200 \mathrm{~N} at an angle of 3030^{\circ} with horizontal. The normal reaction on the roller is

(Given g=10 m s2\mathrm{g=10~m~s^{-2}})

JEE Main 2023 (Online) 31st January Morning Shift Physics - Laws of Motion Question 23 English

Options:

A)

800 N

B)

600 N

C)

2003\sqrt3 N

D)

8002\sqrt2 N

Numerical TypeQuestion 54

For hydrogen atom, λ1\lambda_{1} and λ2\lambda_{2} are the wavelengths corresponding to the transitions 1 and 2 respectively as shown in figure. The ratio of λ1\lambda_{1} and λ2\lambda_{2} is x32\frac{x}{32}. The value of xx is __________.

JEE Main 2023 (Online) 31st January Morning Shift Physics - Atoms and Nuclei Question 58 English

Numerical TypeQuestion 55

Two identical cells, when connected either in parallel or in series gives same current in an external resistance 5 Ω5 ~\Omega. The internal resistance of each cell will be ___________ Ω\Omega.

Numerical TypeQuestion 56

The remainder on dividing 5995^{99} by 11 is ____________.

Numerical TypeQuestion 57

Number of 4-digit numbers that are less than or equal to 2800 and either divisible by 3 or by 11 , is equal to ____________.

Numerical TypeQuestion 58

Let a1,a2,,ana_{1}, a_{2}, \ldots, a_{n} be in A.P. If a5=2a7a_{5}=2 a_{7} and a11=18a_{11}=18, then

12(1a10+a11+1a11+a12++1a17+a18)12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots+\frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right) is equal to ____________.

Question 59

If 1000 droplets of water of surface tension 0.07 N/m0.07 \mathrm{~N} / \mathrm{m}, having same radius 1 mm1 \mathrm{~mm} each, combine to from a single drop. In the process the released surface energy is :-

(Takeπ=227)\left( {\mathrm{Take}\,\pi = {{22} \over 7}} \right)

Options:

A)

7.92×104 J7 .92 \times 10^{-4} \mathrm{~J}

B)

7.92×106 J7 .92 \times 10^{-6} \mathrm{~J}

C)

8.8×105 J8 .8 \times 10^{-5} \mathrm{~J}

D)

9.68×104 J9 .68 \times 10^{-4} \mathrm{~J}

Question 60

The correct relation between γ=cpcv\gamma = {{{c_p}} \over {{c_v}}} and temperature T is :

Options:

A)

γT\gamma \propto T

B)

γ1T\gamma \propto {1 \over {\sqrt T }}

C)

γ1T\gamma \propto {1 \over T}

D)

γT\gamma \propto T^\circ

Question 61

If a source of electromagnetic radiation having power 15 kW15 \mathrm{~kW} produces 101610^{16} photons per second, the radiation belongs to a part of spectrum is.

(Take Planck constant h=6×1034Jsh=6 \times 10^{-34} \mathrm{Js} )

Options:

A)

Gamma rays

B)

Radio waves

C)

Micro waves

D)

Ultraviolet rays

Question 62

Let α(0,1)\alpha \in (0,1) and β=loge(1α)\beta = {\log _e}(1 - \alpha ). Let Pn(x)=x+x22+x33+...+xnn,x(0,1){P_n}(x) = x + {{{x^2}} \over 2} + {{{x^3}} \over 3}\, + \,...\, + \,{{{x^n}} \over n},x \in (0,1). Then the integral 0αt501tdt\int\limits_0^\alpha {{{{t^{50}}} \over {1 - t}}dt} is equal to

Options:

A)

(β+P50(α)) - \left( {\beta + {P_{50}}\left( \alpha \right)} \right)

B)

βP50(α)\beta - {P_{50}}(\alpha )

C)

P50(α)β{P_{50}}(\alpha ) - \beta

D)

β+P50(α)\beta + {P_{50}} - (\alpha )

Question 63

Let the shortest distance between the lines

L:x52=yλ0=z+λ1,λ0L: \frac{x-5}{-2}=\frac{y-\lambda}{0}=\frac{z+\lambda}{1}, \lambda \geq 0 and

L1:x+1=y1=4zL_{1}: x+1=y-1=4-z be 262 \sqrt{6}. If (α,β,γ)(\alpha, \beta, \gamma) lies on LL,

then which of the following is NOT possible?

Options:

A)

α+2γ=24\alpha+2 \gamma=24

B)

2α+γ=72 \alpha+\gamma=7

C)

α2γ=19\alpha-2 \gamma=19

D)

2αγ=92 \alpha-\gamma=9

Question 64

Let a=2i^+j^+k^\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, and b\vec{b} and c\vec{c} be two nonzero vectors such that a+b+c=a+bc|\vec{a}+\vec{b}+\vec{c}|=|\vec{a}+\vec{b}-\vec{c}| and bc=0\vec{b} \cdot \vec{c}=0. Consider the following two statements:

(A) a+λca|\vec{a}+\lambda \vec{c}| \geq|\vec{a}| for all λR\lambda \in \mathbb{R}.

(B) a\vec{a} and c\vec{c} are always parallel.

Then,

Options:

A)

only (B) is correct

B)

both (A) and (B) are correct

C)

only (A) is correct

D)

neither (A) nor (B) is correct

Numerical TypeQuestion 65

Let for xRx \in \mathbb{R},

f(x)=x+x2 and g(x)={x,x<0x2,x0 f(x)=\frac{x+|x|}{2} \text { and } g(x)=\left\{\begin{array}{cc} x, & x<0 \\ x^{2}, & x \geq 0 \end{array}\right. \text {. }

Then area bounded by the curve y=(fg)(x)y=(f \circ g)(x) and the lines y=0,2yx=15y=0,2 y-x=15 is equal to __________.

Question 66

The initial speed of a projectile fired from ground is u\mathrm{u}. At the highest point during its motion, the speed of projectile is 32u\frac{\sqrt{3}}{2} u. The time of flight of the projectile is :

Options:

A)

ug\frac{u}{g}

B)

2ug\frac{2u}{g}

C)

u2g\frac{u}{2g}

D)

3ug\frac{\sqrt3u}{g}

Question 67

Spherical insulating ball and a spherical metallic ball of same size and mass are dropped from the same height. Choose the correct statement out of the following

{Assume negligible air friction}

Options:

A)

Metal ball will reach the earth's surface earlier than the insulating ball

B)

Both will reach the earth's surface simultaneously.

C)

Insulating ball will reach the earth's surface earlier than the metal ball

D)

Time taken by them to reach the earth's surface will be independent of the properties of their materials

Question 68

Two polaroide A\mathrm{A} and B\mathrm{B} are placed in such a way that the pass-axis of polaroids are perpendicular to each other. Now, another polaroid C\mathrm{C} is placed between A\mathrm{A} and B\mathrm{B} bisecting angle between them. If intensity of unpolarized light is I0\mathrm{I}_{0} then intensity of transmitted light after passing through polaroid B\mathrm{B} will be:

Options:

A)

I04\frac{I_{0}}{4}

B)

I08\frac{I_{0}}{8}

C)

Zero

D)

I02\frac{I_{0}}{2}

Numerical TypeQuestion 69

A lift of mass M=500 kg\mathrm{M}=500 \mathrm{~kg} is descending with speed of 2 ms12 \mathrm{~ms}^{-1}. Its supporting cable begins to slip thus allowing it to fall with a constant acceleration of 2 ms22 \mathrm{~ms}^{-2}. The kinetic energy of the lift at the end of fall through to a distance of 6 m6 \mathrm{~m} will be _____________ kJ\mathrm{kJ}.

Numerical TypeQuestion 70

The speed of a swimmer is 4 km h14 \mathrm{~km} \mathrm{~h}^{-1} in still water. If the swimmer makes his strokes normal to the flow of river of width 1 km1 \mathrm{~km}, he reaches a point 750 m750 \mathrm{~m} down the stream on the opposite bank.

The speed of the river water is ___________ km h1\mathrm{km} ~\mathrm{h}^{-1}

Numerical TypeQuestion 71

A solid sphere of mass 1 kg1 \mathrm{~kg} rolls without slipping on a plane surface. Its kinetic energy is 7×103 J7 \times 10^{-3} \mathrm{~J}. The speed of the centre of mass of the sphere is __________ cm s1\operatorname{cm~s}^{-1}

Numerical TypeQuestion 72

Expression for an electric field is given by E=4000x2i^Vm\overrightarrow{\mathrm{E}}=4000 x^{2} \hat{i} \frac{\mathrm{V}}{\mathrm{m}}. The electric flux through the cube of side 20 cm20 \mathrm{~cm} when placed in electric field (as shown in the figure) is __________ V cm\mathrm{V} \mathrm{~cm}.

JEE Main 2023 (Online) 31st January Morning Shift Physics - Electrostatics Question 48 English

Numerical TypeQuestion 73

A thin rod having a length of 1 m1 \mathrm{~m} and area of cross-section 3×106 m23 \times 10^{-6} \mathrm{~m}^{2} is suspended vertically from one end. The rod is cooled from 210C210^{\circ} \mathrm{C} to 160C160^{\circ} \mathrm{C}. After cooling, a mass M\mathrm{M} is attached at the lower end of the rod such that the length of rod again becomes 1 m1 \mathrm{~m}. Young's modulus and coefficient of linear expansion of the rod are 2×1011 N m22 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2} and 2×105 K12 \times 10^{-5} \mathrm{~K}^{-1}, respectively. The value of M\mathrm{M} is __________ kg\mathrm{kg}.

(Take g=10 m s2\mathrm{g=10~m~s^{-2}})

Numerical TypeQuestion 74

In a medium the speed of light wave decreases to 0.20.2 times to its speed in free space The ratio of relative permittivity to the refractive index of the medium is x:1x: 1. The value of xx is _________.

(Given speed of light in free space =3×108 m s1=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} and for the given medium μr=1\mu_{\mathrm{r}}=1)