Jeehub Logo

Jan 30, 2023

JEE Mains

Shift: 2

Total Questions Available: 70

Question 1

Formulae for Nessler's reagent is :

Options:

A)

KHgI3\mathrm{KHgI}_3

B)

HgI2\mathrm{HgI}_2

C)

KHg2I2\mathrm{KHg}_2 \mathrm{I}_2

D)

K2HgI4\mathrm{K}_2 \mathrm{HgI}_4

Question 2

Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: JEE Main 2023 (Online) 30th January Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 40 English 1 can be easily reduced using ZnHg/HCl\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl} to JEE Main 2023 (Online) 30th January Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 40 English 2

Reason R:ZnHg/HCl\mathrm{R}: \mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl} is used to reduce carbonyl group to CH2-\mathrm{CH}_{2}- group.

In the light of the above statements, choose the correct answer from the options given below:

Options:

A)

Both A and R{ \text {Both } A \text { and }} \mathrm{R} are true and R\mathrm{R} is the correct explanation of A\mathrm{A}

B)

A\mathrm{A} is false but R\mathrm{R} is true

C)

A is true but R\mathrm{R} is false

D)

Both A\mathrm{A} and R\mathrm{R} are true but R\mathrm{R} is not the correct explanation of A\mathrm{A}

Question 3

The most stable carbocation for the following is:

JEE Main 2023 (Online) 30th January Evening Shift Chemistry - Compounds Containing Nitrogen Question 40 English

Options:

A)

b

B)

d

C)

c

D)

a

Question 4

Match List I with List II:

List I (Complexes) List II (Hybridisation)
A. [Ni(CO)4]\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] I. sp3\mathrm{sp}^{3}
B. [Cu(NH3)4]2+\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} II. dsp2^{2}
C. [Fe(NH3)6]2+\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} III. sp3d2\mathrm{sp}^{3}\mathrm{d}^{2}
D. [Fe(H2O)6]2+\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} IV. d2sp3\mathrm{d}^{2} \mathrm{sp}^{3}

Options:

A)

A-I, B-II, C-III, D-IV

B)

A-II, B-I, C-III, D-IV

C)

A-I, B-II, C-IV, D-III

D)

A-II, B-I, C-IV, D-III

Question 5

The ClCoCl\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl} bond angle values in a fac- [Co(NH3)3Cl3]\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right] complex is/are :

Options:

A)

90 & 12090^{\circ} ~\&~ 120^{\circ}

B)

9090^{\circ}

C)

180180^{\circ}

D)

90 & 18090^{\circ} ~\& ~180^{\circ}

Question 6

Decreasing order towards SN 1 reaction for the following compounds is:

JEE Main 2023 (Online) 30th January Evening Shift Chemistry - Haloalkanes and Haloarenes Question 31 English

Options:

A)

a>c>d>ba>c>d>b

B)

d>b>c>a\mathrm{d}>\mathrm{b}>\mathrm{c}>\mathrm{a}

C)

a>b>c>da>b>c>d

D)

b>d>c>a\mathrm{b}>\mathrm{d}>\mathrm{c}>\mathrm{a}

Question 7

KMnO4\mathrm{KMnO}_4 oxidises I\mathrm{I}^{-} in acidic and neutral/faintly alkaline solutions, respectively, to :

Options:

A)

IO3 & IO3\mathrm{IO}_3^{-} ~\&~ \mathrm{IO}_3^{-}

B)

I2 & I2\mathrm{I}_2 ~\&~ \mathrm{I}_2

C)

I2 & IO3\mathrm{I}_2 ~\&~ \mathrm{IO}_3^{-}

D)

IO3 & I2\mathrm{IO}_3^{-} ~\&~ \mathrm{I}_2

Question 8

JEE Main 2023 (Online) 30th January Evening Shift Chemistry - Compounds Containing Nitrogen Question 39 English

In the above conversion of compound (X)(\mathrm{X}) to product (Y)(\mathrm{Y}), the sequence of reagents to be used will be:

Options:

A)

 (i) Br2,Fe (ii) Fe,H+(iii) LiAIH4\begin{array}{lll}\text { (i) } \mathrm{Br}_2, \mathrm{Fe} & \text { (ii) } \mathrm{Fe}, \mathrm{H}^{+} & \text {(iii) } \mathrm{LiAIH}_4\end{array}

B)

 (i) Br2(aq) (ii) LiAIH4 (iii) H3O+\begin{array}{lll}\text { (i) } \mathrm{Br}_2(\mathrm{aq}) & \text { (ii) } \mathrm{LiAIH}_4 & \text { (iii) } \mathrm{H}_3 \mathrm{O}^{+}\end{array}

C)

(i) Fe,H+\mathrm{Fe}, \mathrm{H}^{+}   (ii) Br2\mathrm{Br}_2 (aq)   (iii) HNO2\mathrm{HNO}_2   (iv) H3PO2\mathrm{H}_3 \mathrm{PO}_2

D)

(i) Fe,H+\mathrm{Fe}, \mathrm{H}^{+}   (ii) Br2(aq)\mathrm{Br}_2(\mathrm{aq})   (iii) HNO2\mathrm{HNO}_2   (iv) CuBr\mathrm{CuBr}

Question 9

Match List I with List II:

List I (Mixture) List II (Separation Technique)
A. CHCl3+C6H5NH2\mathrm{CHCl}_3+\mathrm{C}_6 \mathrm{H}_5 \mathrm{NH}_2 I. Steam distillation
B. C6H14+C5H12\mathrm{C}_6 \mathrm{H}_{14}+\mathrm{C}_5 \mathrm{H}_{12} II. Differential extraction
C. C6H5NH2+H2O\mathrm{C}_6 \mathrm{H}_5 \mathrm{NH}_2+\mathrm{H}_2 \mathrm{O} III. Distillation
D.  Organic compound in H2O\text { Organic compound in } \mathrm{H}_2 \mathrm{O} IV. Fractional distillation

Options:

A)

A-III, B-I, C-IV, D-II

B)

A-II, B-I, C-III, D-IV

C)

A-IV, B-I, C-III, D-II

D)

A-III, B-IV, C-I, D-II

Question 10

Maximum number of electrons that can be accommodated in shell with n=4n=4 are:

Options:

A)

50

B)

32

C)

72

D)

16

Question 11

Bond dissociation energy of "E-H" bond of the "H2E\mathrm{H}_{2} \mathrm{E} " hydrides of group 16 elements (given below), follows order.

A. O\mathrm{O}

B. S\mathrm{S}

C. Se

D. Te\mathrm{Te}

Choose the correct from the options given below:

Options:

A)

A>B>C>D\mathrm{A}>\mathrm{B}>\mathrm{C}>\mathrm{D}

B)

D>C>B>A\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}

C)

B>A>C>D\mathrm{B}>\mathrm{A}>\mathrm{C}>\mathrm{D}

D)

A>B>D>C\mathrm{A}>\mathrm{B}>\mathrm{D}>\mathrm{C}

Question 12

The correct order of pKa\mathrm{pK}_{\mathrm{a}} values for the following compounds is:

JEE Main 2023 (Online) 30th January Evening Shift Chemistry - Alcohols, Phenols and Ethers Question 37 English

Options:

A)

a>b>c>d \mathrm{a}>\mathrm{b}>\mathrm{c}>\mathrm{d}

B)

c>a>d>bc > a > d > b

C)

b>d>a>c\mathrm{b}>\mathrm{d}>\mathrm{a}>\mathrm{c}

D)

b>a>d>cb > a > d > c

Question 13

1 L,0.02M1 \mathrm{~L}, 0.02 \mathrm{M} solution of [Co(NH3)5SO4]\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] Br is mixed with 1 L,0.02M1 \mathrm{~L}, 0.02 \mathrm{M} solution of [Co(NH3)5Br]SO4\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}. The resulting solution is divided into two equal parts (X)(\mathrm{X}) and treated with excess of AgNO3\mathrm{AgNO}_{3} solution and BaCl2\mathrm{BaCl}_{2} solution respectively as shown below:

1 L1 \mathrm{~L} Solution (X)+AgNO3(\mathrm{X})+\mathrm{AgNO}_{3} solution (excess) Y\longrightarrow \mathrm{Y}

1 L1 \mathrm{~L} Solution (X)+BaCl2(\mathrm{X})+\mathrm{BaCl}_{2} solution (excess) Z\longrightarrow \mathrm{Z}

The number of moles of Y\mathrm{Y} and Z\mathrm{Z} respectively are

Options:

A)

0.01,0.010 .01,0.01

B)

0.01,0.020.01,0.02

C)

0.02,0.010.02,0.01

D)

0.02,0.020.02,0.02

Question 14

The wave function (Ψ)(\Psi) of 2 s2 \mathrm{~s} is given by

Ψ2 s=122π(1a0)1/2(2ra0)er/2a0 \Psi_{2 \mathrm{~s}}=\frac{1}{2 \sqrt{2 \pi}}\left(\frac{1}{a_0}\right)^{1 / 2}\left(2-\frac{r}{a_0}\right) e^{-r / 2 a_0}

At r=r0r=r_0, radial node is formed. Thus, r0r_0 in terms of a0a_0

Options:

A)

r0=a0r_0=a_0

B)

r0=4a0r_0=4 a_0

C)

r0=2a0r_0=2 a_0

D)

r0=a02r_0=\frac{a_0}{2}

Numerical TypeQuestion 15

The strength of 50 volume solution of hydrogen peroxide is ______ g/L\mathrm{g} / \mathrm{L} (Nearest integer).

Given:

Molar mass of H2O2\mathrm{H}_{2} \mathrm{O}_{2} is 34 g mol134 \mathrm{~g} \mathrm{~mol}^{-1}

Molar volume of gas at STP=22.7 L\mathrm{STP}=22.7 \mathrm{~L}

Numerical TypeQuestion 16

A short peptide on complete hydrolysis produces 3 moles of glycine (G), two moles of leucine (L) and two moles of valine (V) per mole of peptide. The number of peptide linkages in it are ________.

Numerical TypeQuestion 17

Number of compounds from the following which will not dissolve in cold NaHCO3\mathrm{NaHCO}_{3} and NaOH\mathrm{NaOH} solutions but will dissolve in hot NaOH\mathrm{NaOH} solution is ________.

JEE Main 2023 (Online) 30th January Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 39 English

Numerical TypeQuestion 18

An organic compound undergoes first-order decomposition. If the time taken for the 60%60 \% decomposition is 540 s540 \mathrm{~s}, then the time required for 90%90 \% decomposition will be ________ s. (Nearest integer).

Given: ln10=2.3;log2=0.3\ln 10=2.3 ; \log 2=0.3

Numerical TypeQuestion 19

1 mole of ideal gas is allowed to expand reversibly and adiabatically from a temperature of 27C27^{\circ} \mathrm{C}. The work done is 3 kJ mol13 \mathrm{~kJ} \mathrm{~mol}^{-1}. The final temperature of the gas is ________ K\mathrm{K} (Nearest integer).

Given CV=20 J mol1 K1\mathrm{C_V}=20 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}

Numerical TypeQuestion 20

The electrode potential of the following half cell at 298 K298 \mathrm{~K}

XX2+(0.001M)Y2+(0.01M)Y\mathrm{X}\left|\mathrm{X}^{2+}(0.001 \mathrm{M}) \| \mathrm{Y}^{2+}(0.01 \mathrm{M})\right| \mathrm{Y} is _______ ×102 V\times 10^{-2} \mathrm{~V} (Nearest integer)

Given: EX2+X0=2.36 V\mathrm{E}^{0} _ {\mathrm{X}^{2+} \mid \mathrm{X}}=-2.36 \mathrm{~V}

EY2+Y0=+0.36 V\mathrm{E}_{\mathrm{Y}^{2+} \mid \mathrm{Y}}^{0}=+0.36 \mathrm{~V}

2.303RTF=0.06 V\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{~V}

Numerical TypeQuestion 21

Consider the following equation:

2SO2(g)+O2(g)2SO3(g),ΔH=190 kJ2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g), \Delta H=-190 \mathrm{~kJ}

The number of factors which will increase the yield of SO3\mathrm{SO}_{3} at equilibrium from the following is _______.

A. Increasing temperature

B. Increasing pressure

C. Adding more SO2\mathrm{SO}_{2}

D. Adding more O2\mathrm{O}_{2}

E. Addition of catalyst

Numerical TypeQuestion 22

Lead storage battery contains 38%38 \% by weight solution of H2SO4\mathrm{H}_{2} \mathrm{SO}_{4}. The van't Hoff factor is 2.672.67 at this concentration. The temperature in Kelvin at which the solution in the battery will freeze is ________. (Nearest integer).

Given Kf=1.8 K kg mol1\mathrm{K}_{f}=1.8 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}

Multiple CorrectQuestion 23

Let a1=1,a2,a3,a4,.a_{1}=1, a_{2}, a_{3}, a_{4}, \ldots .. be consecutive natural numbers.

Then tan1(11+a1a2)+tan1(11+a2a3)+..+tan1(11+a2021a2022)\tan ^{-1}\left(\frac{1}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{1}{1+a_{2} a_{3}}\right)+\ldots . .+\tan ^{-1}\left(\frac{1}{1+a_{2021} a_{2022}}\right) is equal to :

Options:

A)

π4cot1(2022)\frac{\pi}{4}-\cot ^{-1}(2022)

B)

π4tan1(2022)\frac{\pi}{4}-\tan ^{-1}(2022)

C)

cot1(2022)π4\cot ^{-1}(2022)-\frac{\pi}{4}

D)

tan1(2022)π4\tan ^{-1}(2022)-\frac{\pi}{4}

Question 24

For α,βR\alpha, \beta \in \mathbb{R}, suppose the system of linear equations

xy+z=52x+2y+αz=83xy+4z=β \begin{aligned} & x-y+z=5 \\ & 2 x+2 y+\alpha z=8 \\ & 3 x-y+4 z=\beta \end{aligned}

has infinitely many solutions. Then α\alpha and β\beta are the roots of :

Options:

A)

x2+18x+56=0x^2+18 x+56=0

B)

x210x+16=0x^2-10 x+16=0

C)

x2+14x+24=0x^2+14 x+24=0

D)

x218x+56=0x^2-18 x+56=0

Question 25

The number of ways of selecting two numbers aa and b,a{2,4,6,.,100}b, a \in\{2,4,6, \ldots ., 100\} and b{1,3,5,..,99}b \in\{1,3,5, \ldots . ., 99\} such that 2 is the remainder when a+ba+b is divided by 23 is :

Options:

A)

186

B)

54

C)

108

D)

268

Question 26

Let SS be the set of all values of a1a_1 for which the mean deviation about the mean of 100 consecutive positive integers a1,a2,a3,.,a100a_1, a_2, a_3, \ldots ., a_{100} is 25 . Then SS is :

Options:

A)

{9}\{9\}

B)

ϕ\phi

C)

{99}\{99\}

D)

N

Question 27

Let a,b,c>1,a3,b3a, b, c>1, a^3, b^3 and c3c^3 be in A.P., and logab,logca\log _a b, \log _c a and logbc\log _b c be in G.P. If the sum of first 20 terms of an A.P., whose first term is a+4b+c3\frac{a+4 b+c}{3} and the common difference is a8b+c10\frac{a-8 b+c}{10} is 444-444, then abca b c is equal to :

Options:

A)

343

B)

216

C)

3438\frac{343}{8}

D)

1258\frac{125}{8}

Question 28

Let f,gf, g and hh be the real valued functions defined on R\mathbb{R} as

f(x)={xx,x01,x=0f(x)=\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}\right.

g(x)={sin(x+1)(x+1),x11,x=1g(x)=\left\{\begin{array}{cc}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{array}\right.

and h(x)=2[x]f(x)h(x)=2[x]-f(x), where [x][x] is the greatest integer x\leq x. Then the

value of limx1g(h(x1))\lim\limits_{x \rightarrow 1} g(h(x-1)) is :

Options:

A)

1

B)

1-1

C)

sin(1)\sin (1)

D)

0

Question 29

Let qq be the maximum integral value of pp in [0,10][0,10] for which the roots of the equation x2px+54p=0x^2-p x+\frac{5}{4} p=0 are rational. Then the area of the region {(x,y):0y(xq)2,0xq}\left\{(x, y): 0 \leq y \leq(x-q)^2, 0 \leq x \leq q\right\} is :

Options:

A)

1253\frac{125}{3}

B)

243

C)

164

D)

25

Question 30

If the functions f(x)=x33+2bx+ax22f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}

and g(x)=x33+ax+bx2,a2bg(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b

have a common extreme point, then a+2b+7a+2 b+7 is equal to :

Options:

A)

6

B)

32\frac{3}{2}

C)

3

D)

4

Question 31

The parabolas : ax2+2bx+cy=0a x^2+2 b x+c y=0 and dx2+2ex+fy=0d x^2+2 e x+f y=0 intersect on the line y=1y=1. If a,b,c,d,e,fa, b, c, d, e, f are positive real numbers and a,b,ca, b, c are in G.P., then :

Options:

A)

da,eb,fc\frac{d}{a}, \frac{e}{b}, \frac{f}{c} are in A.P.

B)

da,eb,fc\frac{d}{a}, \frac{e}{b}, \frac{f}{c} are in G.P.

C)

d,e,fd, e, f are in A.P.

D)

d,e,fd, e, f are in G.P.

Question 32

Let a\vec{a} and b\vec{b} be two vectors, Let a=1,b=4|\vec{a}|=1,|\vec{b}|=4 and ab=2\vec{a} \cdot \vec{b}=2. If c=(2a×b)3b\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}, then the value of bc\vec{b} \cdot \vec{c} is :

Options:

A)

48-48

B)

60-60

C)

84-84

D)

24-24

Question 33

The range of the function f(x)=3x+2+xf(x)=\sqrt{3-x}+\sqrt{2+x} is :

Options:

A)

[22,11][2 \sqrt{2}, \sqrt{11}]

B)

[5,13][\sqrt{5}, \sqrt{13}]

C)

[2,7][\sqrt{2}, \sqrt{7}]

D)

[5,10][\sqrt{5}, \sqrt{10}]

Question 34

The solution of the differential equation

dydx=(x2+3y23x2+y2),y(1)=0\frac{d y}{d x}=-\left(\frac{x^2+3 y^2}{3 x^2+y^2}\right), y(1)=0 is :

Options:

A)

logex+y+xy(x+y)2=0\log _e|x+y|+\frac{x y}{(x+y)^2}=0

B)

logex+yxy(x+y)2=0\log _e|x+y|-\frac{x y}{(x+y)^2}=0

C)

logex+y+2xy(x+y)2=0\log _e|x+y|+\frac{2 x y}{(x+y)^2}=0

D)

logex+y2xy(x+y)2=0\log _e|x+y|-\frac{2 x y}{(x+y)^2}=0

Question 35

Let x=(83+13)13x=(8 \sqrt{3}+13)^{13} and y=(72+9)9y=(7 \sqrt{2}+9)^9. If [t][t] denotes the greatest integer t\leq t, then :

Options:

A)

[x][x] is odd but [y][y] is even

B)

[x][x] and [y][y] are both odd

C)

[x]+[y][x]+[y] is even

D)

[x][x] is even but [y][y] is odd

Numerical TypeQuestion 36

Let A={1,2,3,5,8,9}A=\{1,2,3,5,8,9\}. Then the number of possible functions f:AAf: A \rightarrow A such that f(mn)=f(m)f(n)f(m \cdot n)=f(m) \cdot f(n) for every m,nAm, n \in A with mnAm \cdot n \in A is equal to ___________.

Numerical TypeQuestion 37

The number of seven digits odd numbers, that can be formed using all the

seven digits 1, 2, 2, 2, 3, 3, 5 is ____________.

Numerical TypeQuestion 38

Let AA be the area of the region

{(x,y):yx2,y(1x)2,y2x(1x)}\left\{(x, y): y \geq x^2, y \geq(1-x)^2, y \leq 2 x(1-x)\right\}.

Then 540 A540 \mathrm{~A} is equal to :

Numerical TypeQuestion 39

If the value of real number a>0a>0 for which x25ax+1=0x^2-5 a x+1=0 and x2ax5=0x^2-a x-5=0

have a common real root is 32β\frac{3}{\sqrt{2 \beta}} then β\beta is equal to ___________.

Numerical TypeQuestion 40

Let P(a1,b1)P\left(a_1, b_1\right) and Q(a2,b2)Q\left(a_2, b_2\right) be two distinct points on a circle with center C(2,3)C(\sqrt{2}, \sqrt{3}). Let O\mathrm{O} be the origin and OC\mathrm{OC} be perpendicular to both CP\mathrm{CP} and CQ\mathrm{CQ}. If the area of the triangle OCP\mathrm{OCP} is 352\frac{\sqrt{35}}{2}, then a12+a22+b12+b22a_1^2+a_2^2+b_1^2+b_2^2 is equal to :

Numerical TypeQuestion 41

Let a line LL pass through the point P(2,3,1)P(2,3,1) and be parallel to the line x+3y2z2=0=xy+2zx+3 y-2 z-2=0=x-y+2 z. If the distance of LL from the point (5,3,8)(5,3,8) is α\alpha, then 3α23 \alpha^2 is equal to :

Numerical TypeQuestion 42

A bag contains six balls of different colours. Two balls are drawn in succession with replacement. The probability that both the balls are of the same colour is p. Next four balls are drawn in succession with replacement and the probability that exactly three balls are of the same colour is qq. If p:q=m:np: q=m: n, where mm and nn are coprime, then m+nm+n is equal to :

Numerical TypeQuestion 43

If sec2x1dx=αlogecos2x+β+cos2x(1+cos1βx)+\int \sqrt{\sec 2 x-1} d x=\alpha \log _e\left|\cos 2 x+\beta+\sqrt{\cos 2 x\left(1+\cos \frac{1}{\beta} x\right)}\right|+ constant, then βα\beta-\alpha is equal to ____________.

Numerical TypeQuestion 44

50th 50^{\text {th }} root of a number xx is 12 and 50th 50^{\text {th }} root of another number yy is 18 . Then the remainder obtained on dividing (x+y)(x+y) by 25 is ____________.

Question 45

A vehicle travels 4 km4 \mathrm{~km} with speed of 3 km/h3 \mathrm{~km} / \mathrm{h} and another 4 km4 \mathrm{~km} with speed of 5 km/h5 \mathrm{~km} / \mathrm{h}, then its average speed is

Options:

A)

3.75 km/h3.75 \mathrm{~km} / \mathrm{h}

B)

4.25 km/h4.25 \mathrm{~km} / \mathrm{h}

C)

3.50 km/h3.50 \mathrm{~km} / \mathrm{h}

D)

4.00 km/h4.00 \mathrm{~km} / \mathrm{h}

Question 46

Match List I with List II:

List I List II
A. Torque I. kgm1 s2\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}
B. Energy density II. kgms1\mathrm{kg} \,\mathrm{ms}^{-1}
C. Pressure gradient III. kgm2 s2\mathrm{kg}\, \mathrm{m}^{-2} \mathrm{~s}^{-2}
D. Impulse IV. kgm2 s2\mathrm{kg} \,\mathrm{m}^{2} \mathrm{~s}^{-2}

Choose the correct answer from the options given below:

Options:

A)

A-IV, B-I, C-III, D-II

B)

A-IV, B-I, C-II, D-III

C)

A-I, B-IV, C-III, D-II

D)

A-IV, B-III, C-I, D-II

Question 47

An object is allowed to fall from a height RR above the earth, where RR is the radius of earth. Its velocity when it strikes the earth's surface, ignoring air resistance, will be

Options:

A)

gR2\sqrt{\frac{g R}{2}}

B)

gR\sqrt{g R}

C)

2gR\sqrt{2 g R}

D)

2gR2 \sqrt{g R}

Question 48

A force is applied to a steel wire 'A', rigidly clamped at one end. As a result elongation in the wire is 0.2 mm0.2 \mathrm{~mm}. If same force is applied to another steel wire ' B\mathrm{B} ' of double the length and a diameter 2.42.4 times that of the wire ' A\mathrm{A} ', the elongation in the wire ' B\mathrm{B} ' will be (wires having uniform circular cross sections)

Options:

A)

6.9×102 mm6 .9 \times 10^{-2} \mathrm{~mm}

B)

6.06×102 mm6.06 \times 10^{-2} \mathrm{~mm}

C)

2.77×102 mm2.77 \times 10^{-2} \mathrm{~mm}

D)

3.0×102 mm3.0 \times 10^{-2} \mathrm{~mm}

Question 49

An electron accelerated through a potential difference V1V_{1} has a de-Broglie wavelength of λ\lambda. When the potential is changed to V2V_{2}, its de-Broglie wavelength increases by 50%50 \%. The value of (V1V2)\left(\frac{V_{1}}{V_{2}}\right) is equal to

Options:

A)

32\frac{3}{2}

B)

4

C)

3

D)

94\frac{9}{4}

Question 50

A machine gun of mass 10 kg10 \mathrm{~kg} fires 20 g20 \mathrm{~g} bullets at the rate of 180 bullets per minute with a speed of 100 m s1100 \mathrm{~m} \mathrm{~s}^{-1} each. The recoil velocity of the gun is

Options:

A)

0.02 m/s 0.02 \mathrm{~m} / \mathrm{s}

B)

1.5 m/s1.5 \mathrm{~m} / \mathrm{s}

C)

2.5 m/s2.5 \mathrm{~m} / \mathrm{s}

D)

0.6 m/s0.6 \mathrm{~m} / \mathrm{s}

Question 51

The equivalent resistance between AA and BB is _________.

JEE Main 2023 (Online) 30th January Evening Shift Physics - Current Electricity Question 65 English

Options:

A)

12Ω\frac{1}{2} \Omega

B)

23Ω\frac{2}{3} \Omega

C)

32Ω\frac{3}{2} \Omega

D)

13Ω\frac{1}{3} \Omega

Question 52

In the given circuit, rms value of current (Irms)\left(I_{\mathrm{rms}}\right) through the resistor RR is:

JEE Main 2023 (Online) 30th January Evening Shift Physics - Alternating Current Question 30 English

Options:

A)

22 A 2 \sqrt{2} \mathrm{~A}

B)

2 A2 \mathrm{~A}

C)

12 A\frac{1}{2} \mathrm{~A}

D)

20 A20 \mathrm{~A}

Question 53

A thin prism P1P_1 with an angle 66^{\circ} and made of glass of refractive index 1.541.54 is combined with another prism P2P_2 made from glass of refractive index 1.721.72 to produce dispersion without average deviation. The angle of prism P2P_2 is

Options:

A)

4.54.5^{\circ}

B)

7.87.8^{\circ}

C)

1.31.3^{\circ}

D)

66^{\circ}

Question 54

A point source of 100 W100 \mathrm{~W} emits light with 5%5 \% efficiency. At a distance of 5 m5 \mathrm{~m} from the source, the intensity produced by the electric field component is:

Options:

A)

140πWm2\frac{1}{40 \pi} \frac{W}{m^2}

B)

110πWm2\frac{1}{10 \pi} \frac{W}{m^2}

C)

120πWm2\frac{1}{20 \pi} \frac{W}{m^2}

D)

12πWm2\frac{1}{2 \pi} \frac{W}{m^2}

Question 55

A block of 3 kg\sqrt{3} \mathrm{~kg} is attached to a string whose other end is attached to the wall. An unknown force F\mathrm{F} is applied so that the string makes an angle of 3030^{\circ} with the wall. The tension T\mathrm{T} is: (Given g=10 ms2\mathrm{g}=10 \mathrm{~ms}^{-2} )

JEE Main 2023 (Online) 30th January Evening Shift Physics - Laws of Motion Question 22 English

Options:

A)

15 N

B)

10 N

C)

25 N

D)

20 N

Question 56

As shown in the figure, a point charge QQ is placed at the centre of conducting spherical shell of inner radius aa and outer radius bb. The electric field due to charge Q\mathrm{Q} in three different regions I,II\mathrm{I}, \mathrm{II} and III\mathrm{III} is given by:

(\mathrm{I}: r < a, \mathrm{II}: a < r < b, III: r>b )

JEE Main 2023 (Online) 30th January Evening Shift Physics - Electrostatics Question 46 English

Options:

A)

EI=0,EII=0,EIII0E_I=0, E_{I I}=0, E_{I I I} \neq 0

B)

EI0,EII=0,EIII=0E_I \neq 0, E_{I I}=0, E_{III}=0

C)

EI0,EII=0,EIII0E_I \neq 0, E_{I I}=0, E_{III} \neq 0

D)

EI=0,EII=0,EIII=0E_I=0, E_{I I}=0, E_{I I I}=0

Question 57

A flask contains hydrogen and oxygen in the ratio of 2:12: 1 by mass at temperature 27C27^{\circ} \mathrm{C}. The ratio of average kinetic energy per molecule of hydrogen and oxygen respectively is:

Options:

A)

1 : 1

B)

4 : 1

C)

1 : 4

D)

2 : 1

Question 58

As shown in the figure, a current of 2 A2 \mathrm{~A} flowing in an equilateral triangle of side 43 cm4 \sqrt{3} \mathrm{~cm}. The magnetic field at the centroid O\mathrm{O} of the triangle is

JEE Main 2023 (Online) 30th January Evening Shift Physics - Magnetic Effect of Current Question 38 English

(Neglect the effect of earth's magnetic field)

Options:

A)

43×104 T4 \sqrt{3} \times 10^{-4} \mathrm{~T}

B)

43×105 T4 \sqrt{3} \times 10^{-5} \mathrm{~T}

C)

33×105 T3 \sqrt{3} \times 10^{-5} \mathrm{~T}

D)

3×104 T\sqrt{3} \times 10^{-4} \mathrm{~T}

Question 59

The output YY for the inputs AA and BB of circuit is given by

JEE Main 2023 (Online) 30th January Evening Shift Physics - Semiconductor Question 32 English

Truth table of the shown circuit is:

Options:

A)

JEE Main 2023 (Online) 30th January Evening Shift Physics - Semiconductor Question 32 English Option 1

B)

JEE Main 2023 (Online) 30th January Evening Shift Physics - Semiconductor Question 32 English Option 2

C)

JEE Main 2023 (Online) 30th January Evening Shift Physics - Semiconductor Question 32 English Option 3

D)

JEE Main 2023 (Online) 30th January Evening Shift Physics - Semiconductor Question 32 English Option 4

Question 60

A current carrying rectangular loop PQRS is made of uniform wire. The length PR=QS=5 cmP R=Q S=5 \mathrm{~cm} and PQ=RS=100 cmP Q=R S=100 \mathrm{~cm}. If ammeter current reading changes from I to 2I2 I, the ratio of magnetic forces per unit length on the wire PQP Q due to wire RSR S in the two cases respectively (fPQI:fPQ2t)\left(f_{P Q}^I: f_{P Q}^{2 t}\right) is:

JEE Main 2023 (Online) 30th January Evening Shift Physics - Magnetic Effect of Current Question 37 English

Options:

A)

1 : 4

B)

1 : 3

C)

1 : 2

D)

1 : 5

Question 61

For a simple harmonic motion in a mass spring system shown, the surface is frictionless. When the mass of the block is 1 kg1 \mathrm{~kg}, the angular frequency is ω1\omega_{1}. When the mass block is 2 kg2 \mathrm{~kg} the angular frequency is ω2\omega_{2}. The ratio ω2/ω1\omega_{2} / \omega_{1} is

JEE Main 2023 (Online) 30th January Evening Shift Physics - Simple Harmonic Motion Question 28 English

Options:

A)

1/21 / \sqrt{2}

B)

1/21 / 2

C)

2

D)

2\sqrt{2}

Numerical TypeQuestion 62

In an ac generator, a rectangular coil of 100 turns each having area 14×102 m214 \times 10^{-2} \mathrm{~m}^{2} is rotated at 360 rev/min360 ~\mathrm{rev} / \mathrm{min} about an axis perpendicular to a uniform magnetic field of magnitude 3.0 T3.0 \mathrm{~T}. The maximum value of the emf produced will be ________ VV.

(\left(\right. Take π=227)\left.\pi=\frac{22}{7}\right)

Numerical TypeQuestion 63

A faulty thermometer reads 5C5^{\circ} \mathrm{C} in melting ice and 95C95^{\circ} \mathrm{C} in stream. The correct temperature on absolute scale will be __________ K\mathrm{K} when the faulty thermometer reads 41C41^{\circ} \mathrm{C}.

Numerical TypeQuestion 64

In a Young's double slit experiment, the intensities at two points, for the path differences λ4\frac{\lambda}{4} and λ3\frac{\lambda}{3} ( λ\lambda being the wavelength of light used) are I1I_{1} and I2I_{2} respectively. If I0I_{0} denotes the intensity produced by each one of the individual slits, then I1+I2I0=\frac{I_{1}+I_{2}}{I_{0}}= __________.

Numerical TypeQuestion 65

If the potential difference between B\mathrm{B} and D\mathrm{D} is zero, the value of xx is 1nΩ\frac{1}{n} \Omega. The value of nn is __________.

JEE Main 2023 (Online) 30th January Evening Shift Physics - Current Electricity Question 64 English

Numerical TypeQuestion 66

A uniform disc of mass 0.5 kg0.5 \mathrm{~kg} and radius rr is projected with velocity 18 m/s18 \mathrm{~m} / \mathrm{s} at t=0\mathrm{t}=0 s on a rough horizontal surface. It starts off with a purely sliding motion at t=0 s\mathrm{t}=0 \mathrm{~s}. After 2 s2 \mathrm{~s} it acquires a purely rolling motion (see figure). The total kinetic energy of the disc after 2 s2 \mathrm{~s} will be __________ J\mathrm{J} (given, coefficient of friction is 0.30.3 and g=10 m/s2g=10 \mathrm{~m} / \mathrm{s}^{2} ).

JEE Main 2023 (Online) 30th January Evening Shift Physics - Rotational Motion Question 33 English

Numerical TypeQuestion 67

The velocity of a particle executing SHM varies with displacement (x)(x) as 4v2=50x24 v^{2}=50-x^{2}. The time period of oscillations is x7s\frac{x}{7} s. The value of xx is ___________. (\left(\right. Take π=227)\left.\pi=\frac{22}{7}\right)

Numerical TypeQuestion 68

A body of mass 2 kg2 \mathrm{~kg} is initially at rest. It starts moving unidirectionally under the influence of a source of constant power P. Its displacement in 4 s4 \mathrm{~s} is 13α2Pm\frac{1}{3} \alpha^{2} \sqrt{P} m. The value of α\alpha will be ______.

Numerical TypeQuestion 69

As shown in figure, a cuboid lies in a region with electric field E=2x2i^4yj^+6k^ N/CE=2 x^{2} \hat{i}-4 y \hat{j}+6 \hat{k} \mathrm{~N} / \mathrm{C}. The magnitude of charge within the cuboid is n0Cn \in_{0} C.

The value of nn is _________ (if dimension of cuboid is 1×2×3 m31 \times 2 \times 3 \mathrm{~m}^{3} )

JEE Main 2023 (Online) 30th January Evening Shift Physics - Electrostatics Question 45 English

Numerical TypeQuestion 70

A stone tied to 180 cm180 \mathrm{~cm} long string at its end is making 28 revolutions in horizontal circle in every minute. The magnitude of acceleration of stone is 1936xms2\frac{1936}{x} ms^{-2}. The value of xx ________. (Take π=227\pi=\frac{22}{7} )