Jeehub Logo

Jan 30, 2023

JEE Mains

Shift: 1

Total Questions Available: 68

Question 1

Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Ketoses give Seliwanoff's test faster than Aldoses.

Reason (R) : Ketoses undergo β\beta-elimination followed by formation of furfural.

In the light of the above statements, choose the correct answer from the options given below :

Options:

A)

(A) is false but (R) is true

B)

Both (A) and (R) are true but (R) is not the correct explanation of (A)

C)

(A) is true but (R) is false

D)

Both (A) and (R) are true and (R) is the correct explanation of (A)

Question 2

Which of the following compounds would give the following set of qualitative analysis ?

(i) Fehling's Test : Positive

(ii) Na fusion extract upon treatment with sodium nitroprusside gives a blood red colour but not prussian blue.

Options:

A)

JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 36 English Option 1

B)

JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 36 English Option 2

C)

JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 36 English Option 3

D)

JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 36 English Option 4

Question 3

Match List I with List II

List I List II
A. JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 30 English 1 I. Fittig reaction
B. JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 30 English 2 II. Wurtz Fittig reaction
C. JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Haloalkanes and Haloarenes Question 30 English 3 III. Finkelstein reaction
D. C5H5C1+NaIC2H5I+NaCl\mathrm{C_5H_5C1+NaI\to C_2H_5I+NaCl} IV. Sandemyer reaction

Choose the correct answer from the options given below :

Options:

A)

A - IV, B - II, C - III, D - I

B)

A - II, B - I, C - IV, D - III

C)

A - II, B - I, C - III, D - IV

D)

A - III, B - II, C - IV, D - I

Question 4

Match List I with List II

List I
(molecules/ions)
List II
(No. of lone pairs of e^- on central atom)
A. IF7\mathrm{IF_7} I. Three
B. ICl\mathrm{ICl}4_4^ - II. One
C. XeF6\mathrm{XeF_6} III. Two
D. XeF2\mathrm{XeF_2} IV. Zero

Choose the correct answer from the options given below :

Options:

A)

A - II, B - I, C - IV, D - III

B)

A - IV, B - I, C - II, D - III

C)

A - IV, B - III, C - II, D - I

D)

A - II, B - III, C - IV, D - I

Numerical TypeQuestion 5

Some amount of dichloromethane (CH2Cl2)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) is added to 671.141 mL671.141 \mathrm{~mL} of chloroform (CHCl3)\left(\mathrm{CHCl}_{3}\right) to prepare 2.6×103M2.6 \times 10^{-3} \mathrm{M} solution of CH2Cl2(DCM)\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{DCM}). The concentration of DCM\mathrm{DCM} is ___________ ppm (by mass).

Given :

atomic mass : C = 12

H = 1

Cl = 35.5

density of CHCl3=1.49 g cm3\mathrm{CHCl}_{3}=1.49 \mathrm{~g} \mathrm{~cm}^{-3}

Question 6

The major products 'A' and 'B', respectively, are

JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Hydrocarbons Question 28 English

Options:

A)

JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Hydrocarbons Question 28 English Option 1

B)

JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Hydrocarbons Question 28 English Option 2

C)

JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Hydrocarbons Question 28 English Option 3

D)

JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Hydrocarbons Question 28 English Option 4

Question 7

In the wet tests for identification of various cations by precipitation, which transition element cation doesn't belong to group IV in qualitative inorganic analysis?

Options:

A)

Co2+

B)

Ni2+

C)

Zn2+

D)

Fe3+

Question 8

During the qualitative analysis of SO32\mathrm{SO}_{3}^{2-} using dilute H2SO4,SO2\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2} gas is evolved which turns K2Cr2O7\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} solution (acidified with dilute H2SO4\mathrm{H}_{2} \mathrm{SO}_{4}) :

Options:

A)

blue

B)

black

C)

red

D)

green

Question 9

Match List I with List II

List I
(Atomic number)
List II
(Block of periodic table)
A. 37 I. p-block
B. 78 II. d-block
C. 52 III. f-block
D. 65 IV. s-block

Choose the correct answer from the options given below :

Options:

A)

A - II, B - IV, C - I, D - III

B)

A - IV, B - III, C - II, D - I

C)

A - IV, B - II, C - I, D - III

D)

A - I, B - III, C - IV, D - II

Question 10

To inhibit the growth of tumours, identify the compounds used from the following :

A. EDTA

B. Coordination Compounds of Pt

C. D - Penicillamine

D. Cis - Platin

Choose the correct answer from the option given below :

Options:

A)

A and B Only

B)

C and D Only

C)

B and D Only

D)

A and C Only

Question 11

What is the correct order of acidity of the protons marked AD\mathrm{A}-\mathrm{D} in the given compounds ?

JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 37 English

Options:

A)

HD>HC>HB>HA\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{A}}

B)

HC>HA>HD>HB\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{B}}

C)

HC>HD>HB>HA\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{A}}

D)

HC>HD>HA>HB\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{B}}

Question 12

Which of the following is correct order of ligand field strength?

Options:

A)

S2<C2O42<NH3<\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3} < en <CO<\mathrm{CO}

B)

CO<en<NH3<C2O42<S2\mathrm{CO}<\mathrm{en}<\mathrm{NH}_{3}<\mathrm{C}_{2} \mathrm{O}_{4}^{2}<\mathrm{S}^{2-}

C)

S2<NH3<\mathrm{S}^{2-}<\mathrm{NH}_{3}< en <CO<C2O42<\mathrm{CO}<\mathrm{C}_{2} \mathrm{O}_{4}^{2}

D)

NH3<en<CO<S2<C2O42\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}<\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2}

Question 13

For OF2\mathrm{OF}_{2} molecule consider the following :

A. Number of lone pairs on oxygen is 2 .

B. FOF angle is less than 104.5104.5^{\circ}.

C. Oxidation state of O\mathrm{O} is 2-2.

D. Molecule is bent 'V\mathrm{V}' shaped.

E. Molecular geometry is linear.

correct options are:

Options:

A)

A, C, D only

B)

A, B, D only

C)

C, D, E only

D)

B, E, A only

Question 14

Benzyl isocyanide can be obtained by :

A. JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Compounds Containing Nitrogen Question 38 English 1

B. JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Compounds Containing Nitrogen Question 38 English 2

C. JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Compounds Containing Nitrogen Question 38 English 3

D. JEE Main 2023 (Online) 30th January Morning Shift Chemistry - Compounds Containing Nitrogen Question 38 English 4

Choose the correct answer from the options given below :

Options:

A)

B and C

B)

A and D

C)

A and B

D)

Only B

Numerical TypeQuestion 15

The number of electrons involved in the reduction of permanganate to manganese dioxide in acidic medium is _____________.

Question 16

If the solution of the equation logcosxcotx+4logsinxtanx=1,x(0,π2)\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right), is sin1(α+β2)\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right), where α\alpha, β\beta are integers, then α+β\alpha+\beta is equal to :

Options:

A)

3

B)

6

C)

4

D)

5

Question 17

Let the solution curve y=y(x)y=y(x) of the differential equation

dy dx3x5tan1(x3)(1+x6)3/2y=2xexp{x3tan1x3(1+x6)} pass through the origin. Then y(1) is equal to :  \frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{3 / 2}} y=2 x \exp \left\{\frac{x^{3}-\tan ^{-1} x^{3}}{\sqrt{\left(1+x^{6}\right)}}\right\} \text { pass through the origin. Then } y(1) \text { is equal to : }

Options:

A)

exp(1π42)\exp \left(\frac{1-\pi}{4 \sqrt{2}}\right)

B)

exp(4π42)\exp \left(\frac{4-\pi}{4 \sqrt{2}}\right)

C)

exp(4+π42)\exp \left(\frac{4+\pi}{4 \sqrt{2}}\right)

D)

exp(π442)\exp \left(\frac{\pi-4}{4 \sqrt{2}}\right)

Question 18

The minimum number of elements that must be added to the relation R={(a,b),(b,c)} \mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c})\} on the set {a,b,c}\{a, b, c\} so that it becomes symmetric and transitive is :

Options:

A)

7

B)

3

C)

4

D)

5

Question 19

Let the system of linear equations

x+y+kz=2x+y+kz=2

2x+3yz=12x+3y-z=1

3x+4y+2z=k3x+4y+2z=k

have infinitely many solutions. Then the system

(k+1)x+(2k1)y=7(k+1)x+(2k-1)y=7

(2k+1)x+(k+5)y=10(2k+1)x+(k+5)y=10

has :

Options:

A)

unique solution satisfying xy=1x-y=1

B)

infinitely many solutions

C)

no solution

D)

unique solution satisfying x+y=1x+y=1

Question 20

If the coefficient of x15x^{15} in the expansion of (ax3+1 bx1/3)15\left(\mathrm{a} x^{3}+\frac{1}{\mathrm{~b} x^{1 / 3}}\right)^{15} is equal to the coefficient of x15x^{-15} in the expansion of (ax1/31bx3)15\left(a x^{1 / 3}-\frac{1}{b x^{3}}\right)^{15}, where aa and bb are positive real numbers, then for each such ordered pair (a,b)(\mathrm{a}, \mathrm{b}) :

Options:

A)

a = 3b

B)

ab = 1

C)

ab = 3

D)

a = b

Question 21

Let a unit vector OP^\widehat{O P} make angles α,β,γ\alpha, \beta, \gamma with the positive directions of the co-ordinate axes OX\mathrm{OX}, OY,OZ\mathrm{OY}, \mathrm{OZ} respectively, where β(0,π2)\beta \in\left(0, \frac{\pi}{2}\right). If OP^\widehat{\mathrm{OP}} is perpendicular to the plane through points (1,2,3),(2,3,4)(1,2,3),(2,3,4) and (1,5,7)(1,5,7), then which one of the following is true?

Options:

A)

α(π2,π)\alpha \in\left(\frac{\pi}{2}, \pi\right) and γ(π2,π)\gamma \in\left(\frac{\pi}{2}, \pi\right)

B)

α(0,π2)\alpha \in\left(0, \frac{\pi}{2}\right) and γ(π2,π)\gamma \in\left(\frac{\pi}{2}, \pi\right)

C)

α(π2,π)\alpha \in\left(\frac{\pi}{2}, \pi\right) and γ(0,π2)\gamma \in\left(0, \frac{\pi}{2}\right)

D)

α(0,π2)\alpha \in\left(0, \frac{\pi}{2}\right) and γ(0,π2)\gamma \in\left(0, \frac{\pi}{2}\right)

Question 22

If an unbiased die, marked with 2,1,0,1,2,3-2,-1,0,1,2,3 on its faces, is thrown five times, then the probability that the product of the outcomes is positive, is :

Options:

A)

27288\frac{27}{288}

B)

5212592\frac{521}{2592}

C)

4402592\frac{440}{2592}

D)

8812592\frac{881}{2592}

Numerical TypeQuestion 23

Let z=1+iz=1+i and z1=1+izˉzˉ(1z)+1zz_{1}=\frac{1+i \bar{z}}{\bar{z}(1-z)+\frac{1}{z}}. Then 12πarg(z1)\frac{12}{\pi} \arg \left(z_{1}\right) is equal to __________.

Numerical TypeQuestion 24

The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted and a and b are respectively mean and variance of remaining 6 observation, then a+3b5\mathrm{a+3 b-5} is equal to ___________.

Question 25

The height of liquid column raised in a capillary tube of certain radius when dipped in liquid A vertically is, 5 cm5 \mathrm{~cm}. If the tube is dipped in a similar manner in another liquid B\mathrm{B} of surface tension and density double the values of liquid A\mathrm{A}, the height of liquid column raised in liquid B\mathrm{B} would be __________ m.

Options:

A)

0.05

B)

0.20

C)

0.5

D)

0.10

Question 26

Choose the correct relationship between Poisson ratio (σ)(\sigma), bulk modulus (K) and modulus of rigidity (η)(\eta) of a given solid object :

Options:

A)

σ=3K+2η6K+2η\sigma=\frac{3 K+2 \eta}{6 K+2 \eta}

B)

σ=3K2η6K+2η\sigma=\frac{3 K-2 \eta}{6 K+2 \eta}

C)

σ=6K+2η3K2η\sigma=\frac{6 K+2 \eta}{3 K-2 \eta}

D)

σ=6K2η3K2η\sigma=\frac{6 K-2 \eta}{3 K-2 \eta}

Question 27

The figure represents the momentum time (pt\mathrm{p}-\mathrm{t}) curve for a particle moving along an axis under the influence of the force. Identify the regions on the graph where the magnitude of the force is maximum and minimum respectively?

If \left(t_{3}-t_{2}\right) < t_{1}

JEE Main 2023 (Online) 30th January Morning Shift Physics - Center of Mass and Collision Question 14 English

Options:

A)

b and c

B)

c and a

C)

a and b

D)

c and b

Question 28

In a series LR circuit with XL=R\mathrm{X_L=R}, power factor P1. If a capacitor of capacitance C with XC=XL\mathrm{X_C=X_L} is added to the circuit the power factor becomes P2. The ratio of P1 to P2 will be :

Options:

A)

1 : 2\sqrt2

B)

1 : 3

C)

1 : 2

D)

1 : 1

Numerical TypeQuestion 29

In an experiment for estimating the value of focal length of converging mirror, image of an object placed at 40 cm40 \mathrm{~cm} from the pole of the mirror is formed at distance 120 cm120 \mathrm{~cm} from the pole of the mirror. These distances are measured with a modified scale in which there are 20 small divisions in 1 cm1 \mathrm{~cm}. The value of error in measurement of focal length of the mirror is 1 K cm\frac{1}{\mathrm{~K}} \mathrm{~cm}. The value of K\mathrm{K} is __________.

Numerical TypeQuestion 30

The general displacement of a simple harmonic oscillator is x=Asinωtx = A\sin \omega t. Let T be its time period. The slope of its potential energy (U) - time (t) curve will be maximum when t=Tβt = {T \over \beta }. The value of β\beta is ______________.

Numerical TypeQuestion 31

JEE Main 2023 (Online) 30th January Morning Shift Physics - Electromagnetic Induction Question 35 English

As per the given figure, if dIdt=1 A/s\frac{\mathrm{dI}}{\mathrm{dt}}=-1 \mathrm{~A} / s then the value of VAB\mathrm{V}_{\mathrm{AB}} at this instant will be ____________ V\mathrm{V}.

Question 32

If tan15+1tan75+1tan105+tan195=2a\tan 15^\circ + {1 \over {\tan 75^\circ }} + {1 \over {\tan 105^\circ }} + \tan 195^\circ = 2a, then the value of (a+1a)\left( {a + {1 \over a}} \right) is :

Options:

A)

53235 - {3 \over 2}\sqrt 3

B)

4234 - 2\sqrt 3

C)

2

D)

4

Numerical TypeQuestion 33

Let α\alpha be the area of the larger region bounded by the curve y2=8xy^{2}=8 x and the lines y=xy=x and x=2x=2, which lies in the first quadrant. Then the value of 3α3 \alpha is equal to ___________.

Question 34

The output waveform of the given logical circuit for the following inputs A and B as shown below, is :

JEE Main 2023 (Online) 30th January Morning Shift Physics - Semiconductor Question 31 English

Options:

A)

JEE Main 2023 (Online) 30th January Morning Shift Physics - Semiconductor Question 31 English Option 1

B)

JEE Main 2023 (Online) 30th January Morning Shift Physics - Semiconductor Question 31 English Option 2

C)

JEE Main 2023 (Online) 30th January Morning Shift Physics - Semiconductor Question 31 English Option 3

D)

JEE Main 2023 (Online) 30th January Morning Shift Physics - Semiconductor Question 31 English Option 4

Question 35

As per the given figure, a small ball P slides down the quadrant of a circle and hits the other ball Q of equal mass which is initially at rest. Neglecting the effect of friction and assume the collision to be elastic, the velocity of ball Q after collision will be :

(g = 10 m/s2)

JEE Main 2023 (Online) 30th January Morning Shift Physics - Center of Mass and Collision Question 15 English

Options:

A)

0.25 m/s

B)

4 m/s

C)

0

D)

2 m/s

Question 36

Two isolated metallic solid spheres of radii R\mathrm{R} and 2R2 \mathrm{R} are charged such that both have same charge density σ\sigma. The spheres are then connected by a thin conducting wire. If the new charge density of the bigger sphere is σ\sigma^{\prime}. The ratio σσ\frac{\sigma^{\prime}}{\sigma} is :

Options:

A)

53\frac{5}{3}

B)

56\frac{5}{6}

C)

94\frac{9}{4}

D)

43\frac{4}{3}

Question 37

Speed of an electron in Bohr's 7th 7^{\text {th }} orbit for Hydrogen atom is 3.6×106 m/s3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}. The corresponding speed of the electron in 3rd 3^{\text {rd }} orbit, in m/s\mathrm{m} / \mathrm{s} is :

Options:

A)

(1.8×106)\left(1.8 \times 10^{6}\right)

B)

(7.5×106)\left(7.5 \times 10^{6}\right)

C)

(8.4×106)\left(8.4 \times 10^{6}\right)

D)

(3.6×106)\left(3.6 \times 10^{6}\right)

Question 38

If the gravitational field in the space is given as (Kr2)\left(-\frac{K}{r^{2}}\right). Taking the reference point to be at r=2 cm\mathrm{r}=2 \mathrm{~cm} with gravitational potential V=10 J/kg\mathrm{V}=10 \mathrm{~J} / \mathrm{kg}. Find the gravitational potential at r=3 cm\mathrm{r}=3 \mathrm{~cm} in SI unit (Given, that K=6 Jcm/kg\mathrm{K}=6 \mathrm{~Jcm} / \mathrm{kg})

Options:

A)

9

B)

11

C)

10

D)

12

Question 39

A person has been using spectacles of power 1.0-1.0 dioptre for distant vision and a separate reading glass of power 2.02.0 dioptres. What is the least distance of distinct vision for this person :

Options:

A)

50 cm

B)

40 cm

C)

30 cm

D)

10 cm

Numerical TypeQuestion 40

In Young's double slit experiment, two slits S1S_{1} and S2S_{2} are 'dd' distance apart and the separation from slits to screen is D\mathrm{D} (as shown in figure). Now if two transparent slabs of equal thickness 0.1 mm0.1 \mathrm{~mm} but refractive index 1.511.51 and 1.551.55 are introduced in the path of beam (λ=4000(\lambda=4000 Ao\mathop A\limits^o ) from S1\mathrm{S}_{1} and S2\mathrm{S}_{2} respectively. The central bright fringe spot will shift by ___________ number of fringes.

JEE Main 2023 (Online) 30th January Morning Shift Physics - Wave Optics Question 24 English

Numerical TypeQuestion 41

In a screw gauge, there are 100 divisions on the circular scale and the main scale moves by 0.5 mm0.5 \mathrm{~mm} on a complete rotation of the circular scale. The zero of circular scale lies 6 divisions below the line of graduation when two studs are brought in contact with each other. When a wire is placed between the studs, 4 linear scale divisions are clearly visible while 46th 46^{\text {th }} division the circular scale coincide with the reference line. The diameter of the wire is ______________ ×102 mm\times 10^{-2} \mathrm{~mm}.

Numerical TypeQuestion 42

When 2 litre of ideal gas expands isothermally into vacuum to a total volume of 6 litre, the change in internal energy is ____________ J. (Nearest integer)

Numerical TypeQuestion 43

The energy of one mole of photons of radiation of frequency 2×1012 Hz2 \times 10^{12} \mathrm{~Hz} in J mol1\mathrm{J} ~\mathrm{mol}^{-1} is ___________. (Nearest integer)

[Given : h=6.626×1034 Js\mathrm{h}=6.626 \times 10^{-34} ~\mathrm{Js}

NA=6.022×1023 mol1\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}]

Question 44

If [t] denotes the greatest integer t\le \mathrm{t}, then the value of 3(e1)e12x2e[x]+[x3]dx{{3(e - 1)} \over e}\int\limits_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx} is :

Options:

A)

e8e\mathrm{e^8-e}

B)

e71\mathrm{e^7-1}

C)

e9e\mathrm{e^9-e}

D)

e81\mathrm{e^8-1}

Question 45

Suppose f:R(0,)f: \mathbb{R} \rightarrow(0, \infty) be a differentiable function such that 5f(x+y)=f(x)f(y),x,yR5 f(x+y)=f(x) \cdot f(y), \forall x, y \in \mathbb{R}. If f(3)=320f(3)=320, then \sum_\limits{n=0}^{5} f(n) is equal to :

Options:

A)

6875

B)

6525

C)

6575

D)

6825

Numerical TypeQuestion 46

Let f1(x)=3x+22x+3,xR{32}f^{1}(x)=\frac{3 x+2}{2 x+3}, x \in \mathbf{R}-\left\{\frac{-3}{2}\right\} For n2\mathrm{n} \geq 2, define fn(x)=f1ofn1(x)f^{\mathrm{n}}(x)=f^{1} \mathrm{o} f^{\mathrm{n}-1}(x). If f5(x)=ax+bbx+a,gcd(a,b)=1f^{5}(x)=\frac{\mathrm{a} x+\mathrm{b}}{\mathrm{b} x+\mathrm{a}}, \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1, then a+b\mathrm{a}+\mathrm{b} is equal to ____________.

Question 47

A small object at rest, absorbs a light pulse of power 20 mW20 \mathrm{~mW} and duration 300 ns300 \mathrm{~ns}. Assuming speed of light as 3×108 m/s3 \times 10^{8} \mathrm{~m} / \mathrm{s}, the momentum of the object becomes equal to :

Options:

A)

1×1017 kg m/s1 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}

B)

0.5×1017 kg m/s0.5 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}

C)

3×1017 kg m/s3 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}

D)

2×1017 kg m/s2 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}

Question 48

The magnetic moments associated with two closely wound circular coils A\mathrm{A} and B\mathrm{B} of radius rA=10\mathrm{r}_{\mathrm{A}}=10 cm\mathrm{cm} and rB=20 cm\mathrm{r}_{\mathrm{B}}=20 \mathrm{~cm} respectively are equal if : (Where NA,IA\mathrm{N}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}} and NB,IB\mathrm{N}_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}} are number of turn and current of A\mathrm{A} and B\mathrm{B} respectively)

Options:

A)

4 NAIA=NBIB4 \mathrm{~N}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}

B)

2 NAIA=NBIB2 \mathrm{~N}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}

C)

NA=2 NB\mathrm{N}_{\mathrm{A}}=2 \mathrm{~N}_{\mathrm{B}}

D)

NAIA=4 NBIB\mathrm{N}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=4 \mathrm{~N}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}

Numerical TypeQuestion 49

In the following circuit, the magnitude of current I1, is ___________ A.

JEE Main 2023 (Online) 30th January Morning Shift Physics - Current Electricity Question 63 English

Numerical TypeQuestion 50

A horse rider covers half the distance with 5 m/s5 \mathrm{~m} / \mathrm{s} speed. The remaining part of the distance was travelled with speed 10 m/s10 \mathrm{~m} / \mathrm{s} for half the time and with speed 15 m/s15 \mathrm{~m} / \mathrm{s} for other half of the time. The mean speed of the rider averaged over the whole time of motion is x7 m/s\frac{x}{7} \mathrm{~m} / \mathrm{s}. The value of xx is ___________.

Numerical TypeQuestion 51

If compound A reacts with B following first order kinetics with rate constant 2.011×103 s12.011 \times 10^{-3} \mathrm{~s}^{-1}. The time taken by A\mathrm{A} (in seconds) to reduce from 7 g7 \mathrm{~g} to 2 g2 \mathrm{~g} will be ___________. (Nearest Integer)

[log5=0.698,log7=0.845,log2=0.301][\log 5=0.698, \log 7=0.845, \log 2=0.301]

Numerical TypeQuestion 52

600 mL600 \mathrm{~mL} of 0.01 M HCl0.01~\mathrm{M} ~\mathrm{HCl} is mixed with 400 mL400 \mathrm{~mL} of 0.01 M H2SO40.01~\mathrm{M} ~\mathrm{H}_{2} \mathrm{SO}_{4}. The pH\mathrm{pH} of the mixture is ___________ ×102\times 10^{-2}. (Nearest integer)

[Given log2=0.30\log 2=0.30

log3=0.48\log 3=0.48

log5=0.69\log 5=0.69

log7=0.84\log 7=0.84

log11=1.04]\log 11=1.04]

Numerical TypeQuestion 53

Consider the cell

Pt(s)H2( g,1 atm)H+(aq,1M)Fe3+(aq),Fe2+(aq)Pt(s)\mathrm{Pt}_{(\mathrm{s})}\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm})\right| \mathrm{H}^{+}(\mathrm{aq}, 1 \mathrm{M})|| \mathrm{Fe}^{3+}(\mathrm{aq}), \mathrm{Fe}^{2+}(\mathrm{aq}) \mid \operatorname{Pt}(\mathrm{s})

When the potential of the cell is 0.712 V0.712 \mathrm{~V} at 298 K298 \mathrm{~K}, the ratio [Fe2+]/[Fe3+]\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right] is _____________. (Nearest integer)

Given : Fe3++e=Fe2+,EθFe3+,Fe2+Pt=0.771\mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+}, \mathrm{E}^{\theta} \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} \mid \mathrm{Pt}=0.771

2.303RTF=0.06 V \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{~V}

Numerical TypeQuestion 54

A trisubstituted compound 'A\mathrm{A}', C10H12O2\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} gives neutral FeCl3\mathrm{FeCl}_{3} test positive. Treatment of compound 'A' with NaOH\mathrm{NaOH} and CH3Br\mathrm{CH}_{3} \mathrm{Br} gives C11H14O2\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}, with hydroiodic acid gives methyl iodide and with hot conc. NaOH\mathrm{NaOH} gives a compound B,C10H12O2\mathrm{B}, \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}. Compound 'A' also decolorises alkaline KMnO4\mathrm{KMnO}_{4}. The number of π\pi bond/s present in the compound 'A\mathrm{A}' is _____________.

Numerical TypeQuestion 55

A solution containing 2 g2 \mathrm{~g} of a non-volatile solute in 20 g20 \mathrm{~g} of water boils at 373.52 K373.52 \mathrm{~K}. The molecular mass of the solute is ___________ g mol1\mathrm{g} ~\mathrm{mol}^{-1}. (Nearest integer)

Given, water boils at 373 K, Kb373 \mathrm{~K}, \mathrm{~K}_{\mathrm{b}} for water =0.52 K kg mol1=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}

Numerical TypeQuestion 56

\lim_\limits{x \rightarrow 0} \frac{48}{x^{4}} \int_\limits{0}^{x} \frac{t^{3}}{t^{6}+1} \mathrm{~d} t is equal to ___________.

Numerical TypeQuestion 57

Number of 4-digit numbers (the repetition of digits is allowed) which are made using the digits 1, 2, 3 and 5, and are divisible by 15, is equal to ___________.

Numerical TypeQuestion 58

Let S={1,2,3,4,5,6}S=\{1,2,3,4,5,6\}. Then the number of one-one functions f:SP(S)f: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S}), where P(S)\mathrm{P}(\mathrm{S}) denote the power set of S\mathrm{S}, such that f(n)f( m)f(n) \subset f(\mathrm{~m}) where n<mn < m is ____________.

Question 59

A massless square loop, of wire of resistance 10Ω10 \Omega, supporting a mass of 1 g1 \mathrm{~g}, hangs vertically with one of its sides in a uniform magnetic field of 103G10^{3} \mathrm{G}, directed outwards in the shaded region. A dc voltage V\mathrm{V} is applied to the loop. For what value of V\mathrm{V}, the magnetic force will exactly balance the weight of the supporting mass of 1 g1 \mathrm{~g} ?

(If sides of the loop =10 cm, g=10 ms2=10 \mathrm{~cm}, \mathrm{~g}=10 \mathrm{~ms}^{-2})

JEE Main 2023 (Online) 30th January Morning Shift Physics - Magnetic Effect of Current Question 36 English

Options:

A)

1 V

B)

110\frac{1}{10}V

C)

10 V

D)

100 V

Question 60

The pressure (P)(\mathrm{P}) and temperature (T)\mathrm{T}) relationship of an ideal gas obeys the equation PT2=\mathrm{PT}^{2}= constant. The volume expansion coefficient of the gas will be :

Options:

A)

3T23 T^{2}

B)

3T2\frac{3}{T^2}

C)

3T3\frac{3}{T^3}

D)

3T\frac{3}{T}

Question 61

The charge flowing in a conductor changes with time as Q(t)=αtβt2+γt3\mathrm{Q}(\mathrm{t})=\alpha \mathrm{t}-\beta \mathrm{t}^{2}+\gamma \mathrm{t}^{3}. Where α,β\alpha, \beta and γ\gamma are constants. Minimum value of current is :

Options:

A)

βα23γ\beta-\frac{\alpha^{2}}{3 \gamma}

B)

α3β2γ\alpha-\frac{3 \beta^{2}}{\gamma}

C)

αβ23γ\alpha-\frac{\beta^{2}}{3 \gamma}

D)

αγ23β\alpha-\frac{\gamma^{2}}{3 \beta}

Question 62

Heat is given to an ideal gas in an isothermal process.

A. Internal energy of the gas will decrease.

B. Internal energy of the gas will increase.

C. Internal energy of the gas will not change.

D. The gas will do positive work.

E. The gas will do negative work.

Choose the correct answer from the options given below :

Options:

A)

B and D only

B)

C and E only

C)

A and E only

D)

C and D only

Question 63

Electric field in a certain region is given by E=(Ax2i^+By3j^). The SI unit of A and B\overrightarrow{\mathrm{E}}=\left(\frac{\mathrm{A}}{x^{2}} \hat{i}+\frac{\mathrm{B}}{y^{3}} \hat{j}\right) \text {. The } \mathrm{SI} \text { unit of } \mathrm{A} \text { and } \mathrm{B} are :

Options:

A)

Nm2C;Nm3C\mathrm{Nm}^{2} \mathrm{C} ; \mathrm{Nm}^{3} \mathrm{C}

B)

Nm3C1;Nm2C1\mathrm{Nm}^{3} \mathrm{C}^{-1} ; \mathrm{Nm}^{2} \mathrm{C}^{-1}

C)

Nm3C;Nm2C\mathrm{Nm}^{3} \mathrm{C} ; \mathrm{Nm}^{2} \mathrm{C}

D)

Nm2C1;Nm3C1\mathrm{Nm}^{2} \mathrm{C}^{-1} ; \mathrm{Nm}^{3} \mathrm{C}^{-1}

Question 64

Match Column-I with Column-II :

Column-I
(xx-t graphs)
Column-II
(vv-t graphs)
A. JEE Main 2023 (Online) 30th January Morning Shift Physics - Motion Question 37 English 1 I. JEE Main 2023 (Online) 30th January Morning Shift Physics - Motion Question 37 English 2
B. JEE Main 2023 (Online) 30th January Morning Shift Physics - Motion Question 37 English 3 II. JEE Main 2023 (Online) 30th January Morning Shift Physics - Motion Question 37 English 4
C. JEE Main 2023 (Online) 30th January Morning Shift Physics - Motion Question 37 English 5 III. JEE Main 2023 (Online) 30th January Morning Shift Physics - Motion Question 37 English 6
D. JEE Main 2023 (Online) 30th January Morning Shift Physics - Motion Question 37 English 7 IV. JEE Main 2023 (Online) 30th January Morning Shift Physics - Motion Question 37 English 8

Choose the correct answer from the options given below:

Options:

A)

A- II, B-III, C-IV, D-I

B)

A- II, B-IV, C-III, D-I

C)

A- I, B-III, C-IV, D-II

D)

A- I, B-II, C-III, D-IV

Question 65

A ball of mass 200 g200 \mathrm{~g} rests on a vertical post of height 20 m20 \mathrm{~m}. A bullet of mass 10 g10 \mathrm{~g}, travelling in horizontal direction, hits the centre of the ball. After collision both travels independently. The ball hits the ground at a distance 30 m30 \mathrm{~m} and the bullet at a distance of 120 m120 \mathrm{~m} from the foot of the post. The value of initial velocity of the bullet will be (if g=10 m/s2g=10 \mathrm{~m} / \mathrm{s}^{2}) :

Options:

A)

120 m/s

B)

360 m/s

C)

400 m/s

D)

60 m/s

Numerical TypeQuestion 66

A thin uniform rod of length 2 m2 \mathrm{~m}, cross sectional area 'AA' and density 'd\mathrm{d}' is rotated about an axis passing through the centre and perpendicular to its length with angular velocity ω\omega. If value of ω\omega in terms of its rotational kinetic energy EE is αEAd\sqrt{\frac{\alpha E}{A d}} then value of α\alpha is ______________.

Numerical TypeQuestion 67

A point source of light is placed at the centre of curvature of a hemispherical surface. The source emits a power of 24 W24 \mathrm{~W}. The radius of curvature of hemisphere is 10 cm10 \mathrm{~cm} and the inner surface is completely reflecting. The force on the hemisphere due to the light falling on it is ____________ × 108 N\times~10^{-8} \mathrm{~N}.

Numerical TypeQuestion 68

A capacitor of capacitance 900μF900 \mu \mathrm{F} is charged by a 100 V100 \mathrm{~V} battery. The capacitor is disconnected from the battery and connected to another uncharged identical capacitor such that one plate of uncharged capacitor connected to positive plate and another plate of uncharged capacitor connected to negative plate of the charged capacitor. The loss of energy in this process is measured as x×102 Jx \times 10^{-} { }^{2} \mathrm{~J}. The value of xx is _____________.