Jeehub Logo

Jul 28, 2022

JEE Mains

Shift: 1

Total Questions Available: 70

Question 1

Identify the incorrect statement from the following.

Options:

A)

A circular path around the nucleus in which an electron moves is proposed as Bohr's orbit.

B)

An orbital is the one electron wave function (ψ)(\psi) in an atom.

C)

The existence of Bohr's orbits is supported by hydrogen spectrum.

D)

Atomic orbital is characterised by the quantum numbers n\mathrm{n} and ll only.

Question 2

Which of the following relation is not correct?

Options:

A)

ΔH=ΔUPΔV\Delta \mathrm{H}=\Delta \mathrm{U}-\mathrm{P} \Delta \mathrm{V}

B)

ΔU=q+W\Delta \mathrm{U}=\mathrm{q}+\mathrm{W}

C)

ΔSsys +ΔSsurr 0\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }} \geqslant 0

D)

ΔG=ΔHTΔS\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}

Question 3

Match List - I with List - II.

List - I List - II
(A) Cd(s)+2Ni(OH)3(s)CdO(s)+2Ni(OH)2(s)+H2O(l)Cd(s) + 2Ni{(OH)_3}(s) \to CdO(s) + 2Ni{(OH)_2}(s) + {H_2}O(l) (I) Primary battery
(B) Zn(Hg)+HgO(s)ZnO(s)+Hg(l)Zn(Hg) + HgO(s) \to ZnO(s) + Hg(l) (II) Discharging of secondary battery
(C) 2PbSO4(s)+2H2O(l)Pb(s)+PbO2(s)+2H2SO4(aq)2PbS{O_4}(s) + 2{H_2}O(l) \to Pb(s) + Pb{O_2}(s) + 2{H_2}S{O_4}(aq) (III) Fuel cell
(D) 2H2(g)+O2(g)2H2O(l)2{H_2}(g) + {O_2}(g) \to 2{H_2}O(l) (IV) Charging of secondary battery

Choose the correct answer from the options given below:

Options:

A)

(A)(I),(B)(II),(C)(III),(D)(IV)(\mathrm{A})-(\mathrm{I}),(\mathrm{B})-(\mathrm{II}),(\mathrm{C})-(\mathrm{III}),(\mathrm{D})-(\mathrm{IV})

B)

(A)(IV),(B)(I),(C)(II),(D)(III)(\mathrm{A})-(\mathrm{IV}),(\mathrm{B})-(\mathrm{I}),(\mathrm{C})-(\mathrm{II}),(\mathrm{D})-(\mathrm{III})

C)

(A)(II),(B)(I),(C)(IV),(D)(III)(\mathrm{A})-(\mathrm{II}),(\mathrm{B})-(\mathrm{I}),(\mathrm{C})-(\mathrm{IV}),(\mathrm{D})-(\mathrm{III})

D)

(A)(II),(B)(I),(C)(III),(D)(IV)(\mathrm{A})-(\mathrm{II}),(\mathrm{B})-(\mathrm{I}),(\mathrm{C})-(\mathrm{III}),(\mathrm{D})-(\mathrm{IV})

Question 4

In which of the following pairs, electron gain enthalpies of constituent elements are nearly the same or identical?

(A) Rb and Cs

(B) Na and K

(C) Ar and Kr

(D) I and At

Choose the correct answer from the options given below :

Options:

A)

(A) and (B) only

B)

(B) and (C) only

C)

(A) and (C) only

D)

(C) and (D) only

Question 5

Match List - I with List - II, match the gas evolved during each reaction.

List - I List - II
(A) (NH4)2Cr2O7Δ\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \stackrel{\Delta}{\longrightarrow} (I) H2\mathrm{H}_{2}
(B) KMnO4+HCl\mathrm{KMnO}_{4}+\mathrm{HCl} \rightarrow (II) N2\mathrm{N}_{2}
(C) Al+NaOH+H2O\mathrm{Al}+\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow (III) O2\mathrm{O}_{2}
(D) NaNO3Δ\mathrm{NaNO}_{3} \stackrel{\Delta}{\longrightarrow} (IV) Cl2\mathrm{Cl}_{2}

Choose the correct answer from the options given below :

Options:

A)

(A)(II),(B)(III),(C)(I),(D)(IV)(\mathrm{A})-(\mathrm{II}),(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-(\mathrm{IV})

B)

(A)(III),(B)(I),(C)(IV),(D)(II)(\mathrm{A})-(\mathrm{III}),(\mathrm{B})-(\mathrm{I}),(\mathrm{C})-(\mathrm{IV}),(\mathrm{D})-(\mathrm{II})

C)

(A)(II),(B)(IV),(C)(I),(D)(III)(\mathrm{A})-(\mathrm{II}),(\mathrm{B})-(\mathrm{IV}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-(\mathrm{III})

D)

(A)(III),(B)(IV),(C)(I),(D)(II)(\mathrm{A})-(\mathrm{III}),(\mathrm{B})-(\mathrm{IV}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-(\mathrm{II})

Question 6

Which of the following has least tendency to liberate H2\mathrm{H}_{2} from mineral acids?

Options:

A)

Cu

B)

Mn

C)

Ni

D)

Zn

Question 7

Match List - I with List - II.

List - I List - II
(A) JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Basics of Organic Chemistry Question 55 English 1 (I) Spiro compound
(B) JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Basics of Organic Chemistry Question 55 English 2 (II) Aromatic compound
(C) JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Basics of Organic Chemistry Question 55 English 3 (III) Non-planar Heterocyclic compound
(D) JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Basics of Organic Chemistry Question 55 English 4 (IV) Bicyclo compound

Choose the correct answer from the options given below :

Options:

A)

(A) - (II), (B) - (I), (C) - (IV), (D) - (III)

B)

(A) - (IV), (B) - (III), (C) - (I), (D) - (II)

C)

(A) - (III), (B) - (IV), (C) - (I), (D) - (II)

D)

(A) - (IV), (B) - (III), (C) - (II), (D) - (I)

Question 8

Choose the correct option for the following reactions.

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 46 English

Options:

A)

'A' and 'B' are both Markovnikov addition products.

B)

'A' is Markovnikov product and 'B' is anti-Markovnikov product.

C)

'A' and 'B' are both anti-Markovnikov products.

D)

'B' is Markovnikov and 'A' is anti-Markovnikov product.

Question 9

Among the following marked proton of which compound shows lowest pKa\mathrm{pK}_{\mathrm{a}} value?

Options:

A)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Basics of Organic Chemistry Question 56 English Option 1

B)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Basics of Organic Chemistry Question 56 English Option 2

C)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Basics of Organic Chemistry Question 56 English Option 3

D)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Basics of Organic Chemistry Question 56 English Option 4

Question 10

Identify the major products A and B for the below given reaction sequence.

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 47 English

Options:

A)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 47 English Option 1

B)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 47 English Option 2

C)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 47 English Option 3

D)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 47 English Option 4

Question 11

Identify the correct statement for the below given transformation.

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Compounds Containing Nitrogen Question 51 English

Options:

A)

ACH3CH2CH=CHCH3, BCH3CH2CH2CH=CH2\mathrm{A}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}, \mathrm{~B}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, Saytzeff products

B)

ACH3CH2CH=CHCH3\mathrm{A}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}, B CH3CH2CH2CH=CH2-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, Hofmann products

C)

ACH3CH2CH2CH=CH2, BCH3CH2CH=CHCH3\mathrm{A}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~B}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}, Hofmann products

D)

ACH3CH2CH2CH=CH2, BCH3CH2CH=CHCH3\mathrm{A}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~B}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}, Saytzeff products

Question 12

For the below given cyclic hemiacetal (X), the correct pyranose structure is :

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Biomolecules Question 38 English

Options:

A)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Biomolecules Question 38 English Option 1

B)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Biomolecules Question 38 English Option 2

C)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Biomolecules Question 38 English Option 3

D)

JEE Main 2022 (Online) 28th July Morning Shift Chemistry - Biomolecules Question 38 English Option 4

Question 13

For kinetic study of the reaction of iodide ion with H2O2\mathrm{H}_{2} \mathrm{O}_{2} at room temperature :

(A) Always use freshly prepared starch solution.

(B) Always keep the concentration of sodium thiosulphate solution less than that of KI solution.

(C) Record the time immediately after the appearance of blue colour.

(D) Record the time immediately before the appearance of blue colour.

(E) Always keep the concentration of sodium thiosulphate solution more than that of KI solution.

Choose the correct answer from the options given below :

Options:

A)

(A),(B),(C)(\mathrm{A}),(\mathrm{B}),(\mathrm{C}) only

B)

(A),(D),(E)(\mathrm{A}),(\mathrm{D}),(\mathrm{E}) only

C)

(D),(E)(\mathrm{D}),(\mathrm{E}) only

D)

(A),(B),(E)(\mathrm{A}),(\mathrm{B}),(\mathrm{E}) only

Numerical TypeQuestion 14

In the given reaction,

X+Y+3ZXYZ3X+Y+3 Z \leftrightarrows X YZ_{3}

if one mole of each of XX and YY with 0.05 mol0.05 \mathrm{~mol} of ZZ gives compound XYZ3X Y Z_{3}. (Given : Atomic masses of X,YX, Y and ZZ are 10, 20 and 30 amu, respectively.) The yield of XYZ3X YZ_{3} is _____________ g. (Nearest integer)

Numerical TypeQuestion 15

The number of paramagnetic species among the following is ___________.

B2,Li2,C2,C2,O22,O2+\mathrm{B}_{2}, \mathrm{Li}_{2}, \mathrm{C}_{2}, \mathrm{C}_{2}^{-}, \mathrm{O}_{2}^{2-}, \mathrm{O}_{2}^{+} and He2+\mathrm{He}_{2}^{+}

Numerical TypeQuestion 16

150 g150 \mathrm{~g} of acetic acid was contaminated with 10.2 g10.2 \mathrm{~g} ascorbic acid (C6H8O6)\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right) to lower down its freezing point by (x×101)C\left(x \times 10^{-1}\right)^{\circ} \mathrm{C}. The value of xx is ___________. (Nearest integer)

[Given Kf=3.9 K kg mol1\mathrm{K}_{f}=3.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}; molar mass of ascorbic acid =176 g mol1=176 \mathrm{~g} \mathrm{~mol}^{-1}]

Numerical TypeQuestion 17

Ka\mathrm{K}_{\mathrm{a}} for butyric acid (C3H7COOH)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}\right) is 2×1052 \times 10^{-5}. The pH\mathrm{pH} of 0.2M0.2 \,\mathrm{M} solution of butyric acid is __________ ×101\times 10^{-1}. (Nearest integer)

[Given log2=0.30\log 2=0.30]

Numerical TypeQuestion 18

For the given first order reaction

AB\mathrm{A} \rightarrow \mathrm{B}

the half life of the reaction is 0.3010 min0.3010 \mathrm{~min}. The ratio of the initial concentration of reactant to the concentration of reactant at time 2.0 min2.0 \mathrm{~min} will be equal to ___________. (Nearest integer)

Numerical TypeQuestion 19

The number of interhalogens from the following having square pyramidal structure is :

ClF3,IF7,BrF5,BrF3,I2Cl6,IF5,ClF,ClF5\mathrm{ClF}_{3}, \mathrm{IF}_{7}, \mathrm{BrF}_{5}, \mathrm{BrF}_{3}, \mathrm{I}_{2} \mathrm{Cl}_{6}, \mathrm{IF}_{5}, \mathrm{ClF}, \mathrm{ClF}_{5}

Numerical TypeQuestion 20

The disproportionation of MnO42\mathrm{MnO}_{4}^{2-} in acidic medium resulted in the formation of two manganese compounds A\mathrm{A} and B\mathrm{B}. If the oxidation state of Mn\mathrm{Mn} in B\mathrm{B} is smaller than that of A, then the spin-only magnetic moment (μ)(\mu) value of B in BM is __________. (Nearest integer)

Numerical TypeQuestion 21

Total number of relatively more stable isomer(s) possible for octahedral complex [Cu(en)2(SCN)2]\left[\mathrm{Cu}(\mathrm{en})_{2}(\mathrm{SCN})_{2}\right] will be _________.

Numerical TypeQuestion 22

On complete combustion of 0.492 g0.492 \mathrm{~g} of an organic compound containing C,H\mathrm{C}, \mathrm{H} and O\mathrm{O}, 0.7938 g0.7938 \mathrm{~g} of CO2\mathrm{CO}_{2} and 0.4428 g0.4428 \mathrm{~g} of H2O\mathrm{H}_{2} \mathrm{O} was produced. The % composition of oxygen in the compound is ___________.

Question 23

Let the solution curve of the differential equation x dy=(x2+y2+y)dx,x>0x \mathrm{~d} y=\left(\sqrt{x^{2}+y^{2}}+y\right) \mathrm{d} x, x>0, intersect the line x=1x=1 at y=0y=0 and the line x=2x=2 at y=αy=\alpha. Then the value of α\alpha is :

Options:

A)

12\frac{1}{2}

B)

32\frac{3}{2}

C)

-32\frac{3}{2}

D)

52\frac{5}{2}

Question 24

Considering only the principal values of the inverse trigonometric functions, the domain of the function f(x)=cos1(x24x+2x2+3)f(x)=\cos ^{-1}\left(\frac{x^{2}-4 x+2}{x^{2}+3}\right) is :

Options:

A)

(,14]\left(-\infty, \frac{1}{4}\right]

B)

[14,)\left[-\frac{1}{4}, \infty\right)

C)

(1/3,)(-1 / 3, \infty)

D)

(,13]\left(-\infty, \frac{1}{3}\right]

Question 25

Let the vectors a=(1+t)i^+(1t)j^+k^,b=(1t)i^+(1+t)j^+2k^\vec{a}=(1+t) \hat{i}+(1-t) \hat{j}+\hat{k}, \vec{b}=(1-t) \hat{i}+(1+t) \hat{j}+2 \hat{k} and c=ti^tj^+k^,tR\vec{c}=t \hat{i}-t \hat{j}+\hat{k}, t \in \mathbf{R} be such that for α,β,γR,αa+βb+γc=0α=β=γ=0\alpha, \beta, \gamma \in \mathbf{R}, \alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}=\overrightarrow{0} \Rightarrow \alpha=\beta=\gamma=0. Then, the set of all values of tt is :

Options:

A)

a non-empty finite set

B)

equal to N\mathbf{N}

C)

equal to R{0}\mathbf{R}-\{0\}

D)

equal to R\mathbf{R}

Question 26

Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation cos1(x)2sin1(x)=cos1(2x)\cos ^{-1}(x)-2 \sin ^{-1}(x)=\cos ^{-1}(2 x) is equal to :

Options:

A)

0

B)

1

C)

12\frac{1}{2}

D)

12-\frac{1}{2}

Question 27

Let a vector a\vec{a} has magnitude 9. Let a vector b\vec{b} be such that for every (x,y)R×R{(0,0)}(x, y) \in \mathbf{R} \times \mathbf{R}-\{(0,0)\}, the vector (xa+yb)(x \vec{a}+y \vec{b}) is perpendicular to the vector (6ya18xb)(6 y \vec{a}-18 x \vec{b}). Then the value of a×b|\vec{a} \times \vec{b}| is equal to :

Options:

A)

939 \sqrt{3}

B)

27327 \sqrt{3}

C)

9

D)

81

Question 28

For t(0,2π)\mathrm{t} \in(0,2 \pi), if ABC\mathrm{ABC} is an equilateral triangle with vertices A(sint,cost),B(cost,sint)\mathrm{A}(\sin t,-\cos \mathrm{t}), \mathrm{B}(\operatorname{cost}, \sin t) and C(a,b)C(a, b) such that its orthocentre lies on a circle with centre (1,13)\left(1, \frac{1}{3}\right), then (a2b2)\left(a^{2}-b^{2}\right) is equal to :

Options:

A)

83\frac{8}{3}

B)

8

C)

779\frac{77}{9}

D)

809\frac{80}{9}

Question 29

For αN\alpha \in \mathbf{N}, consider a relation R\mathrm{R} on N\mathbf{N} given by R={(x,y):3x+αy\mathrm{R}=\{(x, y): 3 x+\alpha y is a multiple of 7}\}. The relation RR is an equivalence relation if and only if :

Options:

A)

α=14\alpha=14

B)

α\alpha is a multiple of 4

C)

4 is the remainder when α\alpha is divided by 10

D)

4 is the remainder when α\alpha is divided by 7

Question 30

Out of 60%60 \% female and 40%40 \% male candidates appearing in an exam, 60%60 \% candidates qualify it. The number of females qualifying the exam is twice the number of males qualifying it. A candidate is randomly chosen from the qualified candidates. The probability, that the chosen candidate is a female, is :

Options:

A)

23\frac{2}{3}

B)

1116\frac{11}{16}

C)

2332\frac{23}{32}

D)

1316\frac{13}{16}

Question 31

If y=y(x),x(0,π/2)y=y(x), x \in(0, \pi / 2) be the solution curve of the differential equation

(sin22x)dydx+(8sin22x+2sin4x)y=2e4x(2sin2x+cos2x)\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+2 \sin 4 x\right) y=2 \mathrm{e}^{-4 x}(2 \sin 2 x+\cos 2 x),

with y(π/4)=eπy(\pi / 4)=\mathrm{e}^{-\pi}, then y(π/6)y(\pi / 6) is equal to :

Options:

A)

23e2π/3\frac{2}{\sqrt{3}} e^{-2 \pi / 3}

B)

23e2π/3\frac{2}{\sqrt{3}} \mathrm{e}^{2 \pi / 3}

C)

13e2π/3\frac{1}{\sqrt{3}} e^{-2 \pi / 3}

D)

13e2π/3\frac{1}{\sqrt{3}} e^{2 \pi / 3}

Question 32

Let CC be the centre of the circle x2+y2x+2y=114x^{2}+y^{2}-x+2 y=\frac{11}{4} and PP be a point on the circle. A line passes through the point C\mathrm{C}, makes an angle of π4\frac{\pi}{4} with the line CP\mathrm{CP} and intersects the circle at the points QQ and RR. Then the area of the triangle PQRP Q R (in unit 2^{2} ) is :

Options:

A)

2

B)

22\sqrt2

C)

8sin(π8)8 \sin \left(\frac{\pi}{8}\right)

D)

8cos(π8)8 \cos \left(\frac{\pi}{8}\right)

Question 33

The remainder when 72022+320227^{2022}+3^{2022} is divided by 5 is :

Options:

A)

0

B)

2

C)

3

D)

4

Question 34

Let S1={z1C:z13=12}S_{1}=\left\{z_{1} \in \mathbf{C}:\left|z_{1}-3\right|=\frac{1}{2}\right\} and S2={z2C:z2z2+1=z2+z21}S_{2}=\left\{z_{2} \in \mathbf{C}:\left|z_{2}-\right| z_{2}+1||=\left|z_{2}+\right| z_{2}-1||\right\}. Then, for z1S1z_{1} \in S_{1} and z2S2z_{2} \in S_{2}, the least value of z2z1\left|z_{2}-z_{1}\right| is :

Options:

A)

0

B)

12\frac{1}{2}

C)

32\frac{3}{2}

D)

52\frac{5}{2}

Question 35

If the minimum value of f(x)=5x22+αx5,x>0f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0, is 14 , then the value of α\alpha is equal to :

Options:

A)

32

B)

64

C)

128

D)

256

Question 36

Let α,β\alpha, \beta and γ\gamma be three positive real numbers. Let f(x)=αx5+βx3+γx,xRf(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in \mathbf{R} and g:RRg: \mathbf{R} \rightarrow \mathbf{R} be such that g(f(x))=xg(f(x))=x for all xRx \in \mathbf{R}. If a1,a2,a3,,an\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{\mathrm{n}} be in arithmetic progression with mean zero, then the value of f(g(1ni=1nf(ai)))f\left(g\left(\frac{1}{\mathrm{n}} \sum\limits_{i=1}^{\mathrm{n}} f\left(\mathrm{a}_{i}\right)\right)\right) is equal to :

Options:

A)

0

B)

3

C)

9

D)

27

Question 37

The minimum value of the twice differentiable function f(x)=0xextf(t)dt(x2x+1)exf(x)=\int\limits_{0}^{x} \mathrm{e}^{x-\mathrm{t}} f^{\prime}(\mathrm{t}) \mathrm{dt}-\left(x^{2}-x+1\right) \mathrm{e}^{x}, xRx \in \mathbf{R}, is :

Options:

A)

2e-\frac{2}{\sqrt{\mathrm{e}}}

B)

2e-2 \sqrt{\mathrm{e}}

C)

e-\sqrt{\mathrm{e}}

D)

2e\frac{2}{\sqrt{\mathrm{e}}}

Numerical TypeQuestion 38

Let SS be the set of all passwords which are six to eight characters long, where each character is either an alphabet from {A,B,C,D,E}\{A, B, C, D, E\} or a number from {1,2,3,4,5}\{1,2,3,4,5\} with the repetition of characters allowed. If the number of passwords in SS whose at least one character is a number from {1,2,3,4,5}\{1,2,3,4,5\} is α×56\alpha \times 5^{6}, then α\alpha is equal to ___________.

Numerical TypeQuestion 39

Let P(2,1,1)\mathrm{P}(-2,-1,1) and Q(5617,4317,11117)\mathrm{Q}\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right) be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are α,1,β\alpha,-1, \beta, where both α\alpha and β\beta are integers of minimum absolute values, then α2+β2\alpha^{2}+\beta^{2} is equal to ____________.

Numerical TypeQuestion 40

Let f:[0,1]Rf:[0,1] \rightarrow \mathbf{R} be a twice differentiable function in (0,1)(0,1) such that f(0)=3f(0)=3 and f(1)=5f(1)=5. If the line y=2x+3y=2 x+3 intersects the graph of ff at only two distinct points in (0,1)(0,1), then the least number of points x(0,1)x \in(0,1), at which f(x)=0f^{\prime \prime}(x)=0, is ____________.

Numerical TypeQuestion 41

If 0315x31+x2+(1+x2)3 dx=α2+β3\int\limits_{0}^{\sqrt{3}} \frac{15 x^{3}}{\sqrt{1+x^{2}+\sqrt{\left(1+x^{2}\right)^{3}}}} \mathrm{~d} x=\alpha \sqrt{2}+\beta \sqrt{3}, where α,β\alpha, \beta are integers, then α+β\alpha+\beta is equal to __________.

Numerical TypeQuestion 42

Let A=[112α]A=\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right] and B=[β110],α,βRB=\left[\begin{array}{cc}\beta & 1 \\ 1 & 0\end{array}\right], \alpha, \beta \in \mathbf{R}. Let α1\alpha_{1} be the value of α\alpha which satisfies (A+B)2=A2+[2222](\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right] and α2\alpha_{2} be the value of α\alpha which satisfies (A+B)2=B2(\mathrm{A}+\mathrm{B})^{2}=\mathrm{B}^{2}. Then α1α2\left|\alpha_{1}-\alpha_{2}\right| is equal to ___________.

Numerical TypeQuestion 43

For p,qR\mathrm{p}, \mathrm{q} \in \mathbf{R}, consider the real valued function f(x)=(xp)2q,xRf(x)=(x-\mathrm{p})^{2}-\mathrm{q}, x \in \mathbf{R} and q>0\mathrm{q}>0. Let a1\mathrm{a}_{1}, a2\mathrm{a}_{2^{\prime}} a3\mathrm{a}_{3} and a4\mathrm{a}_{4} be in an arithmetic progression with mean p\mathrm{p} and positive common difference. If f(ai)=500\left|f\left(\mathrm{a}_{i}\right)\right|=500 for all i=1,2,3,4i=1,2,3,4, then the absolute difference between the roots of f(x)=0f(x)=0 is ___________.

Numerical TypeQuestion 44

Let x1,x2,x3,,x20x_{1}, x_{2}, x_{3}, \ldots, x_{20} be in geometric progression with x1=3x_{1}=3 and the common ratio 12\frac{1}{2}. A new data is constructed replacing each xix_{i} by (xii)2\left(x_{i}-i\right)^{2}. If xˉ\bar{x} is the mean of new data, then the greatest integer less than or equal to xˉ\bar{x} is ____________.

Numerical TypeQuestion 45

limx0((x+2cosx)3+2(x+2cosx)2+3sin(x+2cosx)(x+2)3+2(x+2)2+3sin(x+2))100x\lim\limits_{x \rightarrow 0}\left(\frac{(x+2 \cos x)^{3}+2(x+2 \cos x)^{2}+3 \sin (x+2 \cos x)}{(x+2)^{3}+2(x+2)^{2}+3 \sin (x+2)}\right)^{\frac{100}{x}} is equal to ___________.

Numerical TypeQuestion 46

The sum of all real values of xx for which 3x29x+17x2+3x+10=5x27x+193x2+5x+12\frac{3 x^{2}-9 x+17}{x^{2}+3 x+10}=\frac{5 x^{2}-7 x+19}{3 x^{2}+5 x+12} is equal to __________.

Question 47

The dimensions of (B2μ0)\left(\frac{\mathrm{B}^{2}}{\mu_{0}}\right) will be :

(if μ0\mu_{0} : permeability of free space and BB : magnetic field)

Options:

A)

[ML2T2]\left[\mathrm{M}\, \mathrm{L}^2 \,\mathrm{T}^{-2}\right]

B)

[MLT2]\left[\mathrm{M} \,\mathrm{L} \,\mathrm{T}^{-2}\right]

C)

[ML1 T2]\left[\mathrm{M} \,\mathrm{L}^{-1} \,\mathrm{~T}^{-2}\right]

D)

[ML2 T2 A1]\left[\mathrm{M} \,\mathrm{L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]

Question 48

A NCC parade is going at a uniform speed of 9 km/h9 \mathrm{~km} / \mathrm{h} under a mango tree on which a monkey is sitting at a height of 19.6 m19.6 \mathrm{~m}. At any particular instant, the monkey drops a mango. A cadet will receive the mango whose distance from the tree at time of drop is: (Given g=9.8 m/s2g=9.8 \mathrm{~m} / \mathrm{s}^{2} )

Options:

A)

5 m

B)

10 m

C)

19.8 m

D)

24.5 m

Question 49

In two different experiments, an object of mass 5 kg5 \mathrm{~kg} moving with a speed of 25 ms125 \mathrm{~ms}^{-1} hits two different walls and comes to rest within (i) 3 second, (ii) 5 seconds, respectively. Choose the correct option out of the following :

Options:

A)

Impulse and average force acting on the object will be same for both the cases.

B)

Impulse will be same for both the cases but the average force will be different.

C)

Average force will be same for both the cases but the impulse will be different.

D)

Average force and impulse will be different for both the cases.

Question 50

A balloon has mass of 10 g10 \mathrm{~g} in air. The air escapes from the balloon at a uniform rate with velocity 4.5 cm/s4.5 \mathrm{~cm} / \mathrm{s}. If the balloon shrinks in 5 s5 \mathrm{~s} completely. Then, the average force acting on that balloon will be (in dyne).

Options:

A)

3

B)

9

C)

12

D)

18

Question 51

If the radius of earth shrinks by 2%2 \% while its mass remains same. The acceleration due to gravity on the earth's surface will approximately :

Options:

A)

decrease by 2%2 \%

B)

decrease by 4%4 \%

C)

increase by 2%2 \%

D)

increase by 4%4 \%

Question 52

The force required to stretch a wire of cross-section 1 cm21 \mathrm{~cm}^{2} to double its length will be : (Given Yong's modulus of the wire =2×1011 N/m2=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2})

Options:

A)

1×107 N1 \times 10^{7} \mathrm{~N}

B)

1.5×107 N1.5 \times 10^{7} \mathrm{~N}

C)

2×107 N2 \times 10^{7} \mathrm{~N}

D)

2.5×107 N2.5 \times 10^{7} \mathrm{~N}

Question 53

Given below are two statements :

Statement I : The average momentum of a molecule in a sample of an ideal gas depends on temperature.

Statement II : The rms speed of oxygen molecules in a gas is vv. If the temperature is doubled and the oxygen molecules dissociate into oxygen atoms, the rms speed will become 2v2 v.

In the light of the above statements, choose the correct answer from the options given below :

Options:

A)

Both Statement I and Statement II are true

B)

Both Statement I and Statement II are false

C)

Statement I is true but Statement II is false

D)

Statement I is false but Statement II is true

Question 54

In the wave equation

y=0.5sin2πλ(400tx)m y=0.5 \sin \frac{2 \pi}{\lambda}(400 \mathrm{t}-x) \,\mathrm{m}

the velocity of the wave will be:

Options:

A)

200 m/s

B)

2002\sqrt2 m/s

C)

400 m/s

D)

4002\sqrt2 m/s

Question 55

Two capacitors, each having capacitance 40μF40 \,\mu \mathrm{F} are connected in series. The space between one of the capacitors is filled with dielectric material of dielectric constant K\mathrm{K} such that the equivalence capacitance of the system became 24μF24 \,\mu \mathrm{F}. The value of K\mathrm{K} will be :

Options:

A)

1.5

B)

2.5

C)

1.2

D)

3

Question 56

A wire of resistance R1 is drawn out so that its length is increased by twice of its original length. The ratio of new resistance to original resistance is :

Options:

A)

9 : 1

B)

1 : 9

C)

4 : 1

D)

3 : 1

Question 57

The current sensitivity of a galvanometer can be increased by :

(A) decreasing the number of turns

(B) increasing the magnetic field

(C) decreasing the area of the coil

(D) decreasing the torsional constant of the spring

Choose the most appropriate answer from the options given below :

Options:

A)

(B) and (C) only

B)

(C) and (D) only

C)

(A) and (C) only

D)

(B) and (D) only

Question 58

As shown in the figure, a metallic rod of linear density 0.45 kg m10.45 \mathrm{~kg} \mathrm{~m}^{-1} is lying horizontally on a smooth inclined plane which makes an angle of 4545^{\circ} with the horizontal. The minimum current flowing in the rod required to keep it stationary, when 0.15 T0.15 \mathrm{~T} magnetic field is acting on it in the vertical upward direction, will be :

{Use g=10 m/s2g=10 \mathrm{~m} / \mathrm{s}^{2}}

JEE Main 2022 (Online) 28th July Morning Shift Physics - Magnetic Effect of Current Question 50 English

Options:

A)

30 A

B)

15 A

C)

10 A

D)

3 A

Question 59

The equation of current in a purely inductive circuit is 5sin(49πt30)5 \sin \left(49\, \pi t-30^{\circ}\right). If the inductance is 30mH30 \,\mathrm{mH} then the equation for the voltage across the inductor, will be :

{\left\{\right. Let π=227}\left.\pi=\frac{22}{7}\right\}

Options:

A)

1.47sin(49πt30)1.47 \sin \left(49 \pi t-30^{\circ}\right)

B)

1.47sin(49πt+60)1.47 \sin \left(49 \pi t+60^{\circ}\right)

C)

23.1sin(49πt30)23.1 \sin \left(49 \pi t-30^{\circ}\right)

D)

23.1sin(49πt+60)23.1 \sin \left(49 \pi t+60^{\circ}\right)

Question 60

As shown in the figure, after passing through the medium 1 . The speed of light v2v_{2} in medium 2 will be :

(\left(\right. Given c=3×108 ms1\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1} )

JEE Main 2022 (Online) 28th July Morning Shift Physics - Geometrical Optics Question 50 English

Options:

A)

1.0×108 ms11.0 \times 10^{8} \mathrm{~ms}^{-1}

B)

0.5×108 ms10.5 \times 10^{8} \mathrm{~ms}^{-1}

C)

1.5×108 ms11.5 \times 10^{8} \mathrm{~ms}^{-1}

D)

3.0×108 ms13.0 \times 10^{8} \mathrm{~ms}^{-1}

Question 61

In normal adujstment, for a refracting telescope, the distance between objective and eye piece is 30 cm30 \mathrm{~cm}. The focal length of the objective, when the angular magnification of the telescope is 2 , will be :

Options:

A)

20 cm

B)

30 cm

C)

10 cm

D)

15 cm

Question 62

The equation λ=1.227x nm\lambda=\frac{1.227}{x} \mathrm{~nm} can be used to find the de-Brogli wavelength of an electron. In this equation xx stands for :

Where

m=\mathrm{m}= mass of electron

P=\mathrm{P}= momentum of electron

K=\mathrm{K}= Kinetic energy of electron

V=\mathrm{V}= Accelerating potential in volts for electron

Options:

A)

mK\sqrt{\mathrm{mK}}

B)

P\sqrt{\mathrm{P}}

C)

K\sqrt{\mathrm{K}}

D)

V\sqrt{\mathrm{V}}

Question 63

Identify the solar cell characteristics from the following options :

Options:

A)

JEE Main 2022 (Online) 28th July Morning Shift Physics - Semiconductor Question 40 English Option 1

B)

JEE Main 2022 (Online) 28th July Morning Shift Physics - Semiconductor Question 40 English Option 2

C)

JEE Main 2022 (Online) 28th July Morning Shift Physics - Semiconductor Question 40 English Option 3

D)

JEE Main 2022 (Online) 28th July Morning Shift Physics - Semiconductor Question 40 English Option 4

Numerical TypeQuestion 64

If the projection of 2i^+4j^2k^2 \hat{i}+4 \hat{j}-2 \hat{k} on i^+2j^+αk^\hat{i}+2 \hat{j}+\alpha \hat{k} is zero. Then, the value of α\alpha will be ___________.

Numerical TypeQuestion 65

In a Young's double slit experiment, a laser light of 560 nm produces an interference pattern with consecutive bright fringes' separation of 7.2 mm. Now another light is used to produce an interference pattern with consecutive bright fringes' separation of 8.1 mm. The wavelength of second light is __________ nm.

Numerical TypeQuestion 66

The frequencies at which the current amplitude in an LCR series circuit becomes 12\frac{1}{\sqrt{2}} times its maximum value, are 212rads1212\,\mathrm{rad} \,\mathrm{s}^{-1} and 232rads1232 \,\mathrm{rad} \,\mathrm{s}^{-1}. The value of resistance in the circuit is R=5ΩR=5 \,\Omega. The self inductance in the circuit is __________ mH\mathrm{mH}.

Numerical TypeQuestion 67

Two electric dipoles of dipole moments 1.2×1030Cm1.2 \times 10^{-30} \,\mathrm{Cm} and 2.4×1030Cm2.4 \times 10^{-30} \,\mathrm{Cm} are placed in two different uniform electric fields of strengths 5×104NC15 \times 10^{4} \,\mathrm{NC}^{-1} and 15×104NC115 \times 10^{4} \,\mathrm{NC}^{-1} respectively. The ratio of maximum torque experienced by the electric dipoles will be 1x\frac{1}{x}. The value of xx is __________.

Numerical TypeQuestion 68

The diameter of an air bubble which was initially 2 mm2 \mathrm{~mm}, rises steadily through a solution of density 1750 kg m31750 \mathrm{~kg} \mathrm{~m}^{-3} at the rate of 0.35cms10.35 \,\mathrm{cms}^{-1}. The coefficient of viscosity of the solution is _________ poise (in nearest integer). (the density of air is negligible).

Numerical TypeQuestion 69

A block of mass 'm\mathrm{m}' (as shown in figure) moving with kinetic energy E compresses a spring through a distance 25 cm25 \mathrm{~cm} when, its speed is halved. The value of spring constant of used spring will be nENm1\mathrm{nE} \,\,\mathrm{Nm}^{-1} for n=\mathrm{n}= _________.

JEE Main 2022 (Online) 28th July Morning Shift Physics - Work Power & Energy Question 35 English

Numerical TypeQuestion 70

Four identical discs each of mass 'M\mathrm{M}' and diameter 'a\mathrm{a}' are arranged in a small plane as shown in figure. If the moment of inertia of the system about OO\mathrm{OO}^{\prime} is x4Ma2\frac{x}{4} \,\mathrm{Ma}^{2}. Then, the value of xx will be ____________.

JEE Main 2022 (Online) 28th July Morning Shift Physics - Rotational Motion Question 39 English