Jeehub Logo

Jul 26, 2022

JEE Mains

Shift: 2

Total Questions Available: 65

Question 1

Hemoglobin contains 0.34%0.34 \% of iron by mass. The number of Fe atoms in 3.3 g3.3 \mathrm{~g} of hemoglobin is

(Given: Atomic mass of Fe is 56u,NA=6.022×1023 mol156 \,\mathrm{u}, \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}.)

Options:

A)

1.21×1051.21 \times 10^{5}

B)

12.0×101612.0 \times 10^{16}

C)

1.21×10201.21 \times 10^{20}

D)

3.4×10223.4 \times 10^{22}

Question 2

Arrange the following in increasing order of their covalent character.

A. CaF2\mathrm{CaF}_{2}

B. CaCl2\mathrm{CaCl}_{2}

C. CaBr2\mathrm{CaBr}_{2}

D. CaI2\mathrm{CaI}_{2}

Choose the correct answer from the options given below.

Options:

A)

B < A < C < D

B)

A < B < C < D

C)

A < B < D < C

D)

A < C < B < D

Question 3

Class XII students were asked to prepare one litre of buffer solution of pH8.26\mathrm{pH} \,8.26 by their Chemistry teacher: The amount of ammonium chloride to be dissolved by the student in 0.2M0.2\, \mathrm{M} ammonia solution to make one litre of the buffer is :

(Given: pKb(NH3)=4.74\mathrm{pK}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=4.74

Molar mass of NH3=17 g mol1\mathrm{NH}_{3}=17 \mathrm{~g} \mathrm{~mol}^{-1}

Molar mass of NH4Cl=53.5 g mol1\mathrm{NH}_{4} \mathrm{Cl}=53.5 \mathrm{~g} \mathrm{~mol}^{-1} )

Options:

A)

53.5 g

B)

72.3 g

C)

107.0 g

D)

126.0 g

Question 4

At 30C30^{\circ} \mathrm{C}, the half life for the decomposition of AB2\mathrm{AB}_{2} is 200 s200 \mathrm{~s} and is independent of the initial concentration of AB2\mathrm{AB}_{2}. The time required for 80%80 \% of the AB2\mathrm{AB}_{2} to decompose is

Given: log2=0.30\log 2=0.30 log3=0.48\quad \log 3=0.48

Options:

A)

200 s

B)

323 s

C)

467 s

D)

532 s

Question 5

The metal complex that is diamagnetic is (Atomic number: Fe,26;Cu,29)\mathrm{Fe}, 26 ; \mathrm{Cu}, 29)

Options:

A)

K3[Cu(CN)4]\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]

B)

K2[Cu(CN)4]\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]

C)

K3[Fe(CN)4]\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]

D)

K4[FeCl6]\mathrm{K}_{4}\left[\mathrm{FeCl}_{6}\right]

Question 6

The correct decreasing order of priority of functional groups in naming an organic Question: compound as per IUPAC system of nomenclature is

Options:

A)

COOH>CONH2>COCl>CHO-\mathrm{COOH}>-\mathrm{CONH}_{2}>-\mathrm{COCl}>-\mathrm{CHO}

B)

SO3H>COCl>CONH2>CN\mathrm{SO}_{3} \mathrm{H}>-\mathrm{COCl}>-\mathrm{CONH}_{2}>-\mathrm{CN}

C)

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Basics of Organic Chemistry Question 64 English Option 3

D)

COOH>COOR>CONH2>COCl-\mathrm{COOH}>-\mathrm{COOR}>-\mathrm{CONH}_{2}>-\mathrm{COCl}

Multiple CorrectQuestion 7

Which of the following is not an example of benzenoid compound?

Options:

A)

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Basics of Organic Chemistry Question 62 English Option 1

B)

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Basics of Organic Chemistry Question 62 English Option 2

C)

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Basics of Organic Chemistry Question 62 English Option 3

D)

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Basics of Organic Chemistry Question 62 English Option 4

Question 8

Hydrolysis of which compound will give carbolic acid?

Options:

A)

Cumene

B)

Benzenediazonium chloride

C)

Benzal chloride

D)

Ethylene glycol ketal

Question 9

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 54 English

Consider the above reaction and predict the major product.

Options:

A)

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 54 English Option 1

B)

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 54 English Option 2

C)

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 54 English Option 3

D)

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 54 English Option 4

Question 10

The correct sequential order of the reagents for the given reaction is

JEE Main 2022 (Online) 26th July Evening Shift Chemistry - Compounds Containing Nitrogen Question 54 English

Options:

A)

HNO2,Fe/H+,HNO2,KI,H2O/H+\mathrm{HNO}_{2}, \mathrm{Fe} / \mathrm{H}^{+}, \mathrm{HNO}_{2}, \mathrm{KI}, \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}

B)

HNO2,KI,Fe/H+,HNO2,H2O/\mathrm{HNO}_{2}, \mathrm{KI}, \mathrm{Fe} / \mathrm{H}^{+}, \mathrm{HNO}_{2}, \mathrm{H}_{2} \mathrm{O} / warm

C)

HNO2,KI,HNO2,Fe/H+,H2O/H+\mathrm{HNO}_{2}, \mathrm{KI}, \mathrm{HNO}_{2}, \mathrm{Fe} / \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}

D)

HNO2,Fe/H+,KI,HNO2,H2O/\mathrm{HNO}_{2}, \mathrm{Fe} / \mathrm{H}^{+}, \mathrm{KI}, \mathrm{HNO}_{2}, \mathrm{H}_{2} \mathrm{O} / warm

Question 11

Animal starch is the other name of

Options:

A)

amylose.

B)

maltose.

C)

glycogen.

D)

amylopectin.

Question 12

Given below are two statements: one is labelled as Assertion A\mathbf{A} and the other is labelled as Reason R\mathbf{R}.

Assertion A: Phenolphthalein is a pH\mathrm{pH} dependent indicator, remains colourless in acidic solution and gives pink colour in basic medium.

Reason R: Phenolphthalein is a weak acid. It doesn't dissociate in basic medium.

In the light of the above statements, choose the most appropriate answer from the options given below.

Options:

A)

Both A\mathbf{A} and R\mathbf{R} are true and R\mathbf{R} is the correct explanation of A\mathbf{A}.

B)

Both A\mathbf{A} and R\mathbf{R} are true but R\mathbf{R} is NOT the correct explanation of A\mathbf{A}.

C)

A is true but R is false.

D)

A is false but R is true.

Numerical TypeQuestion 13

Consider an imaginary ion 2248X3{ }_{22}^{48} \mathrm{X}^{3-}. The nucleus contains 'aa'% more neutrons than the number of electrons in the ion. The value of 'a' is _______________. [nearest integer]

Numerical TypeQuestion 14

For the reaction

H2F2( g)H2( g)+F2( g)\mathrm{H}_{2} \mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})

ΔU=59.6 kJ mol1\Delta U=-59.6 \mathrm{~kJ} \mathrm{~mol}^{-1} at 27C27^{\circ} \mathrm{C}.

The enthalpy change for the above reaction is (-) __________ kJmol1\mathrm{kJ} \,\mathrm{mol}^{-1} [nearest integer]

Given: R=8.314 J K1 mol1\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}.

Numerical TypeQuestion 15

The elevation in boiling point for 1 molal solution of non-volatile solute A is 3 K3 \mathrm{~K}. The depression in freezing point for 2 molal solution of A\mathrm{A} in the same solvent is 6 KK. The ratio of KbK_{b} and KfK_{f} i.e., Kb/KfK_{b} / K_{f} is 1:X1: X. The value of XX is [nearest integer]

Numerical TypeQuestion 16

20 mL20 \mathrm{~mL} of 0.02M0.02\, \mathrm{M} hypo solution is used for the titration of 10 mL10 \mathrm{~mL} of copper sulphate solution, in the presence of excess of KI using starch as an indicator. The molarity of Cu2+\mathrm{Cu}^{2+} is found to be ____________ ×102M\times 10^{-2} \,\mathrm{M}. [nearest integer]

Given : 2Cu2++4ICu2I2+I22 \,\mathrm{Cu}^{2+}+4 \,\mathrm{I}^{-} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}

I2+2 S2O322I+S4O62 \mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}

Numerical TypeQuestion 17

The spin-only magnetic moment value of the compound with strongest oxidizing ability among MnF4,MnF3\mathrm{MnF}_{4}, \mathrm{MnF}_{3} and MnF2\mathrm{MnF}_{2} is ____________ B.M. [nearest integer]

Numerical TypeQuestion 18

Total number of isomers (including stereoisomers) obtained on monochlorination of methylcyclohexane is ___________.

Numerical TypeQuestion 19

A 100 mL100 \mathrm{~mL} solution of CH3CH2MgBr\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr} on treatment with methanol produces 2.24 mL2.24 \mathrm{~mL} of a gas at STP. The weight of gas produced is _____________ mg. [nearest integer]

Question 20

The minimum value of the sum of the squares of the roots of x2+(3a)x+1=2ax^{2}+(3-a) x+1=2 a is:

Options:

A)

4

B)

5

C)

6

D)

8

Question 21

If z=x+iyz=x+i y satisfies z2=0|z|-2=0 and ziz+5i=0|z-i|-|z+5 i|=0, then :

Options:

A)

x+2y4=0x+2 y-4=0

B)

x2+y4=0x^{2}+y-4=0

C)

x+2y+4=0x+2 y+4=0

D)

x2y+3=0x^{2}-y+3=0

Question 22

 Let A=[111] and B=[92102112122132142152162172], then the value of ABA is:  \text { Let } A=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right] \text { and } B=\left[\begin{array}{ccc} 9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2} \end{array}\right] \text {, then the value of } A^{\prime} B A \text { is: }

Options:

A)

1224

B)

1042

C)

540

D)

539

Question 23

Let P\mathrm{P} and Q\mathrm{Q} be any points on the curves (x1)2+(y+1)2=1(x-1)^{2}+(y+1)^{2}=1 and y=x2y=x^{2}, respectively. The distance between PP and QQ is minimum for some value of the abscissa of PP in the interval :

Options:

A)

(0,14)\left(0, \frac{1}{4}\right)

B)

(12,34)\left(\frac{1}{2}, \frac{3}{4}\right)

C)

(14,12)\left(\frac{1}{4}, \frac{1}{2}\right)

D)

(34,1)\left(\frac{3}{4}, 1\right)

Question 24

If the maximum value of aa, for which the function fa(x)=tan12x3ax+7f_{a}(x)=\tan ^{-1} 2 x-3 a x+7 is non-decreasing in (π6,π6)\left(-\frac{\pi}{6}, \frac{\pi}{6}\right), is aˉ\bar{a}, then faˉ(π8)f_{\bar{a}}\left(\frac{\pi}{8}\right) is equal to :

Options:

A)

89π4(9+π2) 8-\frac{9 \pi}{4\left(9+\pi^{2}\right)}

B)

84π9(4+π2)8-\frac{4 \pi}{9\left(4+\pi^{2}\right)}

C)

8(1+π29+π2)8\left(\frac{1+\pi^{2}}{9+\pi^{2}}\right)

D)

8π48-\frac{\pi}{4}

Question 25

Let β=limx0αx(e3x1)αx(e3x1)\beta=\mathop {\lim }\limits_{x \to 0} \frac{\alpha x-\left(e^{3 x}-1\right)}{\alpha x\left(e^{3 x}-1\right)} for some αR\alpha \in \mathbb{R}. Then the value of α+β\alpha+\beta is :

Options:

A)

145\frac{14}{5}

B)

32\frac{3}{2}

C)

52\frac{5}{2}

D)

72\frac{7}{2}

Question 26

The value of loge2ddx(logcosxcosecx)\log _{e} 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right) at x=π4x=\frac{\pi}{4} is

Options:

A)

22-2 \sqrt{2}

B)

222 \sqrt{2}

C)

4-4

D)

4

Question 27

020π(sinx+cosx)2dx is equal to  \int\limits_{0}^{20 \pi}(|\sin x|+|\cos x|)^{2} d x \text { is equal to }

Options:

A)

10(π+4)10(\pi+4)

B)

10(π+2)10(\pi+2)

C)

20(π2)20(\pi-2)

D)

20(π+2)20(\pi+2)

Question 28

Let the solution curve y=f(x)y=f(x) of the differential equation \frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}\(, \)x\in(-1,1)\( pass through the origin. Then \)\int\limits_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x is equal to

Options:

A)

π314\frac{\pi}{3}-\frac{1}{4}

B)

π334\frac{\pi}{3}-\frac{\sqrt{3}}{4}

C)

π634\frac{\pi}{6}-\frac{\sqrt{3}}{4}

D)

π632\frac{\pi}{6}-\frac{\sqrt{3}}{2}

Question 29

Let the abscissae of the two points PP and QQ on a circle be the roots of x24x6=0x^{2}-4 x-6=0 and the ordinates of P\mathrm{P} and Q\mathrm{Q} be the roots of y2+2y7=0y^{2}+2 y-7=0. If PQ\mathrm{PQ} is a diameter of the circle x2+y2+2ax+2by+c=0x^{2}+y^{2}+2 a x+2 b y+c=0, then the value of (a+bc)(a+b-c) is _____________.

Options:

A)

12

B)

13

C)

14

D)

16

Question 30

If the line x1=0x-1=0 is a directrix of the hyperbola kx2y2=6k x^{2}-y^{2}=6, then the hyperbola passes through the point :

Options:

A)

(25,6)(-2 \sqrt{5}, 6)

B)

(5,3)(-\sqrt{5}, 3)

C)

(5,2)(\sqrt{5},-2)

D)

(25,36)(2 \sqrt{5}, 3 \sqrt{6})

Question 31

If 0<x<120 < x < {1 \over {\sqrt 2 }} and sin1xα=cos1xβ{{{{\sin }^{ - 1}}x} \over \alpha } = {{{{\cos }^{ - 1}}x} \over \beta }, then the value of sin(2παα+β)\sin \left( {{{2\pi \alpha } \over {\alpha + \beta }}} \right) is :

Options:

A)

4(1x2)(12x2)4 \sqrt{\left(1-x^{2}\right)}\left(1-2 x^{2}\right)

B)

4x(1x2)(12x2)4 x \sqrt{\left(1-x^{2}\right)}\left(1-2 x^{2}\right)

C)

2x(1x2)(14x2)2 x \sqrt{\left(1-x^{2}\right)}\left(1-4 x^{2}\right)

D)

4(1x2)(14x2)4 \sqrt{\left(1-x^{2}\right)}\left(1-4 x^{2}\right)

Question 32

 The integral (113)(cosxsinx)(1+23sin2x)dx is equal to  \text { The integral } \int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x \text { is equal to }

Options:

A)

12logetan(x2+π12)tan(x2+π6)+C\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}\right|+C

B)

12logetan(x2+π6)tan(x2+π3)+C\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{3}\right)}\right|+C

C)

logetan(x2+π6)tan(x2+π12)+C \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}\right|+C

D)

12logetan(x2π12)tan(x2π6)+C\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}-\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}-\frac{\pi}{6}\right)}\right|+C

Question 33

The area bounded by the curves y=x21y=\left|x^{2}-1\right| and y=1y=1 is

Options:

A)

23(2+1)\frac{2}{3}(\sqrt{2}+1)

B)

43(21)\frac{4}{3}(\sqrt{2}-1)

C)

2(21)2(\sqrt{2}-1)

D)

83(21)\frac{8}{3}(\sqrt{2}-1)

Numerical TypeQuestion 34

Let A={1,2,3,4,5,6,7}A=\{1,2,3,4,5,6,7\} and B={3,6,7,9}B=\{3,6,7,9\}. Then the number of elements in the set {CA:CBϕ}\{C \subseteq A: C \cap B \neq \phi\} is ___________.

Numerical TypeQuestion 35

Numbers are to be formed between 1000 and 3000 , which are divisible by 4 , using the digits 1,2,3,4,51,2,3,4,5 and 6 without repetition of digits. Then the total number of such numbers is ____________.

Numerical TypeQuestion 36

The mean and standard deviation of 40 observations are 30 and 5 respectively. It was noticed that two of these observations 12 and 10 were wrongly recorded. If σ\sigma is the standard deviation of the data after omitting the two wrong observations from the data, then 38σ238 \sigma^{2} is equal to ___________.

Numerical TypeQuestion 37

Suppose y=y(x)y=y(x) be the solution curve to the differential equation dydxy=2ex\frac{d y}{d x}-y=2-e^{-x} such that limxy(x)\lim\limits_{x \rightarrow \infty} y(x) is finite. If aa and bb are respectively the xx - and yy-intercepts of the tangent to the curve at x=0x=0, then the value of a4ba-4 b is equal to _____________.

Numerical TypeQuestion 38

Different A.P.'s are constructed with the first term 100, the last term 199, and integral common differences. The sum of the common differences of all such A.P.'s having at least 3 terms and at most 33 terms is ___________.

Numerical TypeQuestion 39

The number of matrices A=(abcd)A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), where a,b,c,d{1,0,1,2,3,,10}a, b, c, d \in\{-1,0,1,2,3, \ldots \ldots, 10\}, such that A=A1A=A^{-1}, is ___________.

Question 40

Two projectiles are thrown with same initial velocity making an angle of 4545^{\circ} and 3030^{\circ} with the horizontal respectively. The ratio of their respective ranges will be :

Options:

A)

1:21: \sqrt{2}

B)

2:1\sqrt{2}: 1

C)

2:32: \sqrt{3}

D)

3:2\sqrt{3}: 2

Question 41

In a Vernier Calipers, 10 divisions of Vernier scale is equal to the 9 divisions of main scale. When both jaws of Vernier calipers touch each other, the zero of the Vernier scale is shifted to the left of zero of the main scale and 4th 4^{\text {th }} Vernier scale division exactly coincides with the main scale reading. One main scale division is equal to 1 mm1 \mathrm{~mm}. While measuring diameter of a spherical body, the body is held between two jaws. It is now observed that zero of the Vernier scale lies between 30 and 31 divisions of main scale reading and 6th 6^{\text {th }} Vernier scale division exactly coincides with the main scale reading. The diameter of the spherical body will be :

Options:

A)

3.02 cm

B)

3.06 cm

C)

3.10 cm

D)

3.20 cm

Question 42

A ball of mass 0.15 kg0.15 \mathrm{~kg} hits the wall with its initial speed of 12 ms112 \mathrm{~ms}^{-1} and bounces back without changing its initial speed. If the force applied by the wall on the ball during the contact is 100 N100 \mathrm{~N}, calculate the time duration of the contact of ball with the wall.

Options:

A)

0.018 s

B)

0.036 s

C)

0.009 s

D)

0.072 s

Question 43

A body of mass 8 kg8 \mathrm{~kg} and another of mass 2 kg2 \mathrm{~kg} are moving with equal kinetic energy. The ratio of their respective momentum will be :

Options:

A)

1 : 1

B)

2 : 1

C)

1 : 4

D)

4 : 1

Question 44

Two uniformly charged spherical conductors AA and BB of radii 5 mm5 \mathrm{~mm} and 10 mm10 \mathrm{~mm} are separated by a distance of 2 cm2 \mathrm{~cm}. If the spheres are connected by a conducting wire, then in equilibrium condition, the ratio of the magnitudes of the electric fields at the surface of the sphere AA and BB will be :

Options:

A)

1 : 2

B)

2 : 1

C)

1 : 1

D)

1 : 4

Question 45

The oscillating magnetic field in a plane electromagnetic wave is given by

By=5×106sin1000π(5x4×108t)TB_{y}=5 \times 10^{-6} \sin 1000 \pi\left(5 x-4 \times 10^{8} t\right) T. The amplitude of electric field will be :

Options:

A)

15×102Vm115 \times 10^{2} \,\mathrm{Vm}^{-1}

B)

5×106Vm15 \times 10^{-6} \,\mathrm{Vm}^{-1}

C)

16×1012Vm116 \times 10^{12} \,\mathrm{Vm}^{-1}

D)

4×102Vm14 \times 10^{2} \,\mathrm{Vm}^{-1}

Question 46

Light travels in two media M1M_{1} and M2M_{2} with speeds 1.5×108 ms11.5 \times 10^{8} \mathrm{~ms}^{-1} and 2.0×108 ms12.0 \times 10^{8} \mathrm{~ms}^{-1} respectively. The critical angle between them is :

Options:

A)

tan1(37)\tan ^{-1}\left(\frac{3}{\sqrt{7}}\right)

B)

tan1(23)\tan ^{-1}\left(\frac{2}{3}\right)

C)

cos1(34)\cos ^{-1}\left(\frac{3}{4}\right)

D)

sin1(23)\sin ^{-1}\left(\frac{2}{3}\right)

Question 47

A body is projected vertically upwards from the surface of earth with a velocity equal to one third of escape velocity. The maximum height attained by the body will be :

(Take radius of earth =6400 km=6400 \mathrm{~km} and g=10 ms2\mathrm{g}=10 \mathrm{~ms}^{-2} )

Options:

A)

800 km

B)

1600 km

C)

2133 km

D)

4800 km

Question 48

A nucleus of mass MM at rest splits into two parts having masses M3\frac{M^{\prime}}{3} and 2M3(M<M){{2M'} \over 3}(M' < M). The ratio of de Broglie wavelength of two parts will be :

Options:

A)

1 : 2

B)

2 : 1

C)

1 : 1

D)

2 : 3

Question 49

An ice cube of dimensions 60 cm×50 cm×20 cm60 \mathrm{~cm} \times 50 \mathrm{~cm} \times 20 \mathrm{~cm} is placed in an insulation box of wall thickness 1 cm1 \mathrm{~cm}. The box keeping the ice cube at 0C0^{\circ} \mathrm{C} of temperature is brought to a room of temperature 40C40^{\circ} \mathrm{C}. The rate of melting of ice is approximately :

(Latent heat of fusion of ice is 3.4×105 J kg13.4 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1} and thermal conducting of insulation wall is 0.05Wm1C10.05 \,\mathrm{Wm}^{-1 \circ} \mathrm{C}^{-1} )

Options:

A)

61×103 kg s161 \times 10^{-3} \mathrm{~kg} \mathrm{~s}^{-1}

B)

61×105 kg s161 \times 10^{-5} \mathrm{~kg} \mathrm{~s}^{-1}

C)

208 kg s1208 \mathrm{~kg} \mathrm{~s}^{-1}

D)

30×105 kg s130 \times 10^{-5} \mathrm{~kg} \mathrm{~s}^{-1}

Question 50

A gas has nn degrees of freedom. The ratio of specific heat of gas at constant volume to the specific heat of gas at constant pressure will be :

Options:

A)

nn+2 \frac{n}{n+2}

B)

n+2n \frac{n+2}{n}

C)

n2n+2 \frac{n}{2n+2}

D)

nn2 \frac{n}{n-2}

Question 51

A transverse wave is represented by y=2sin(ωtkx)cmy=2 \sin (\omega t-k x)\, \mathrm{cm}. The value of wavelength (in cm\mathrm{cm}) for which the wave velocity becomes equal to the maximum particle velocity, will be :

Options:

A)

4π\pi

B)

2π\pi

C)

π\pi

D)

2

Question 52

A battery of 6 V6 \mathrm{~V} is connected to the circuit as shown below. The current I drawn from the battery is :

JEE Main 2022 (Online) 26th July Evening Shift Physics - Current Electricity Question 88 English

Options:

A)

1A

B)

2A

C)

611\frac{6}{11} A

D)

43\frac{4}{3} A

Question 53

A source of potential difference VV is connected to the combination of two identical capacitors as shown in the figure. When key 'KK' is closed, the total energy stored across the combination is E1E_{1}. Now key 'KK' is opened and dielectric of dielectric constant 5 is introduced between the plates of the capacitors. The total energy stored across the combination is now E2E_{2}. The ratio E1/E2E_{1} / E_{2} will be :

JEE Main 2022 (Online) 26th July Evening Shift Physics - Capacitor Question 33 English

Options:

A)

110\frac{1}{10}

B)

25\frac{2}{5}

C)

513\frac{5}{13}

D)

526\frac{5}{26}

Question 54

Two concentric circular loops of radii r1=30 cmr_{1}=30 \mathrm{~cm} and r2=50 cmr_{2}=50 \mathrm{~cm} are placed in XY\mathrm{X}-\mathrm{Y} plane as shown in the figure. A current I=7 AI=7 \mathrm{~A} is flowing through them in the direction as shown in figure. The net magnetic moment of this system of two circular loops is approximately :

JEE Main 2022 (Online) 26th July Evening Shift Physics - Magnetic Effect of Current Question 52 English

Options:

A)

72k^Am2\frac{7}{2} \hat{k} \,\mathrm{Am}^{2}

B)

72k^Am2-\frac{7}{2} \hat{k} \,\mathrm{Am}^{2}

C)

7k^Am2{7}\, \hat{k} \,\mathrm{Am}^{2}

D)

7k^Am2{-7}\, \hat{k} \,\mathrm{Am}^{2}

Question 55

A velocity selector consists of electric field E=Ek^\vec{E}=E \,\hat{k} and magnetic field B=Bj^\vec{B}=B \,\hat{j} with B=12mTB=12 \,m T. The value of EE required for an electron of energy 728eV728 \,\mathrm{e} V moving along the positive xx-axis to pass undeflected is :

(Given, mass of electron =9.1×1031 kg=9.1 \times 10^{-31} \mathrm{~kg} )

Options:

A)

192kVm1192 \,\mathrm{kVm}^{-1}

B)

192mVm1192 \,\mathrm{mVm}^{-1}

C)

9600kVm19600 \,\mathrm{kVm}^{-1}

D)

16kVm116 \,\mathrm{kVm}^{-1}

Question 56

Two masses M1M_{1} and M2M_{2} are tied together at the two ends of a light inextensible string that passes over a frictionless pulley. When the mass M2M_{2} is twice that of M1M_{1}, the acceleration of the system is a1a_{1}. When the mass M2M_{2} is thrice that of M1M_{1}, the acceleration of the system is a2a_{2}. The ratio a1a2\frac{a_{1}}{a_{2}} will be :

JEE Main 2022 (Online) 26th July Evening Shift Physics - Laws of Motion Question 33 English

Options:

A)

13\frac{1}{3}

B)

23\frac{2}{3}

C)

32\frac{3}{2}

D)

12\frac{1}{2}

Question 57

The area of cross section of the rope used to lift a load by a crane is 2.5×104 m22.5 \times 10^{-4} \mathrm{~m}^{2}. The maximum lifting capacity of the crane is 10 metric tons. To increase the lifting capacity of the crane to 25 metric tons, the required area of cross section of the rope should be :

(take g=10ms2g=10 \,m s^{-2} )

Options:

A)

6.25×104 m26.25\times 10^{-4} \mathrm{~m}^{2}

B)

10×104 m210\times 10^{-4} \mathrm{~m}^{2}

C)

1×104 m21\times 10^{-4} \mathrm{~m}^{2}

D)

1.67×104 m21.67\times 10^{-4} \mathrm{~m}^{2}

Numerical TypeQuestion 58

If A=(2i^+3j^k^)m\vec{A}=(2 \hat{i}+3 \hat{j}-\hat{k})\, \mathrm{m} and B=(i^+2j^+2k^)m\vec{B}=(\hat{i}+2 \hat{j}+2 \hat{k}) \,\mathrm{m}. The magnitude of component of vector A\vec{A} along vector B\vec{B} will be ____________ m\mathrm{m}.

Numerical TypeQuestion 59

The radius of gyration of a cylindrical rod about an axis of rotation perpendicular to its length and passing through the center will be ___________ m\mathrm{m}.

Given, the length of the rod is 103 m10 \sqrt{3} \mathrm{~m}.

Numerical TypeQuestion 60

In the given figure, the face ACA C of the equilateral prism is immersed in a liquid of refractive index 'nn'. For incident angle 6060^{\circ} at the side ACA C, the refractive light beam just grazes along face ACA C. The refractive index of the liquid n=x4n=\frac{\sqrt{x}}{4}. The value of xx is ____________.

(Given refractive index of glass =1.5=1.5 )

JEE Main 2022 (Online) 26th July Evening Shift Physics - Geometrical Optics Question 55 English

Numerical TypeQuestion 61

Two lighter nuclei combine to form a comparatively heavier nucleus by the relation given below :

12X+12X=24Y{ }_{1}^{2} X+{ }_{1}^{2} X={ }_{2}^{4} Y

The binding energies per nucleon for 21X\frac{2}{1} X and 24Y{ }_{2}^{4} Y are 1.1MeV1.1 \,\mathrm{MeV} and 7.6MeV7.6 \,\mathrm{MeV} respectively. The energy released in this process is _______________ MeV\mathrm{MeV}.

Numerical TypeQuestion 62

A uniform heavy rod of mass 20 kg20 \mathrm{~kg}, cross sectional area 0.4 m20.4 \mathrm{~m}^{2} and length 20 m20 \mathrm{~m} is hanging from a fixed support. Neglecting the lateral contraction, the elongation in the rod due to its own weight is x×109 mx \times 10^{-9} \mathrm{~m}. The value of xx is _______________.

(Given, young modulus Y = 2 ×\times 1011 Nm-2 and g = 10 ms-2)

Numerical TypeQuestion 63

Three point charges of magnitude 5μC,0.16μC5 \mu \mathrm{C}, 0.16 \mu \mathrm{C} and 0.3μC0.3 \mu \mathrm{C} are located at the vertices A,B,CA, B, C of a right angled triangle whose sides are AB=3 cm,BC=32 cmA B=3 \mathrm{~cm}, B C=3 \sqrt{2} \mathrm{~cm} and CA=3 cmC A=3 \mathrm{~cm} and point AA is the right angle corner. Charge at point A\mathrm{A} experiences ____________ N\mathrm{N} of electrostatic force due to the other two charges.

Numerical TypeQuestion 64

In a coil of resistance 8Ω8 \,\Omega, the magnetic flux due to an external magnetic field varies with time as ϕ=23(9t2)\phi=\frac{2}{3}\left(9-t^{2}\right). The value of total heat produced in the coil, till the flux becomes zero, will be _____________ JJ.

Numerical TypeQuestion 65

As per given figures, two springs of spring constants kk and 2k2 k are connected to mass mm. If the period of oscillation in figure (a) is 3s3 \mathrm{s}, then the period of oscillation in figure (b) will be x s\sqrt{x}~ s. The value of xx is ___________.

JEE Main 2022 (Online) 26th July Evening Shift Physics - Simple Harmonic Motion Question 38 English