Jeehub Logo

Jul 25, 2022

JEE Mains

Shift: 1

Total Questions Available: 68

Question 1

Which of the following sets of quantum numbers is not allowed?

Options:

A)

n=3,1=2, ml=0, s=+12 \mathrm{n}=3,1=2, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~s}=+\frac{1}{2}

B)

n=3,l=2, ml=2, s=+12 \mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}_{\mathrm{l}}=-2, \mathrm{~s}=+\frac{1}{2}

C)

n=3,l=3, ml=3, s=12 \mathrm{n}=3, \mathrm{l}=3, \mathrm{~m}_{\mathrm{l}}=-3, \mathrm{~s}=-\frac{1}{2}

D)

n=3,l=0, m1=0, s=12 \mathrm{n}=3, \mathrm{l}=0, \mathrm{~m}_{1}=0, \mathrm{~s}=-\frac{1}{2}

Question 2

The IUPAC nomenclature of an element with electronic configuration [Rn] 5f146d17s25 \mathrm{f}^{14} 6 \mathrm{d}^{1} 7 \mathrm{s}^{2} is :

Options:

A)

Unnilbium

B)

Unnilunium

C)

Unnilquadium

D)

Unniltrium

Question 3

During the denaturation of proteins, which of these structures will remain intact?

Options:

A)

Primary

B)

Secondary

C)

Tertiary

D)

Quaternary

Numerical TypeQuestion 4

The half life for the decomposition of gaseous compound A\mathrm{A} is 240 s240 \mathrm{~s} when the gaseous pressure was 500 Torr initially. When the pressure was 250 Torr, the half life was found to be 4.04.0 min. The order of the reaction is ______________. (Nearest integer)

Question 5

SO2Cl2\mathrm{SO}_{2} \mathrm{Cl}_{2} on reaction with excess of water results into acidic mixture

SO2Cl2+2H2OH2SO4+2HCl\mathrm{SO}_{2} \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}

16 moles of NaOH\mathrm{NaOH} is required for the complete neutralisation of the resultant acidic mixture. The number of moles of SO2Cl2\mathrm{SO}_{2} \mathrm{Cl}_{2} used is :

Options:

A)

16

B)

8

C)

4

D)

2

Question 6

The depression in freezing point observed for a formic acid solution of concentration 0.5 mL L10.5 \mathrm{~mL} \mathrm{~L}^{-1} is 0.0405C0.0405^{\circ} \mathrm{C}. Density of formic acid is 1.05 g mL11.05 \mathrm{~g} \mathrm{~mL}^{-1}. The Van't Hoff factor of the formic acid solution is nearly : (Given for water kf=1.86kkgmol1\mathrm{k}_{\mathrm{f}}=1.86\, \mathrm{k} \,\mathrm{kg}\,\mathrm{mol}^{-1} )

Options:

A)

0.8

B)

1.1

C)

1.9

D)

2.4

Question 7

Given below are two statements :

Statement I : On heating with KHSO4\mathrm{KHSO}_{4}, glycerol is dehydrated and acrolein is formed.

Statement II : Acrolein has fruity odour and can be used to test glycerol's presence.

Choose the correct option.

Options:

A)

Both Statement I and Statement II are correct.

B)

Both Statement I and Statement II are incorrect.

C)

Statement I is correct but Statement II is incorrect.

D)

Statement I is incorrect but Statement II is correct.

Question 8

A compound ‘A\mathrm{A}’ on reaction with ‘X\mathrm{X}’ and ‘Y\mathrm{Y}’ produces the same major product but different by product 'aa' and 'bb^{\prime}. Oxidation of 'aa' gives a substance produced by ants.

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Hydrocarbons Question 35 English

'X' and 'Y' respectively are

Options:

A)

KMnO4/H+\mathrm{KMnO}_{4} / \mathrm{H}^{+} and dil. KMnO4273 K\mathrm{KMnO}_{4^{\prime}} \,273 \mathrm{~K}

B)

KMnO4\mathrm{KMnO}_{4} (dilute), 273 K273 \mathrm{~K} and KMnO4/H+\mathrm{KMnO}_{4} / \mathrm{H}^{+}

C)

KMnO4/H+\mathrm{KMnO}_{4} / \mathrm{H}^{+} and O3,H2O/Zn\mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O} / \mathrm{Zn}

D)

O3,H2O/Zn\mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O} / \mathrm{Zn} and KMnO4/H+\mathrm{KMnO}_{4} / \mathrm{H}^{+}

Question 9

Most stable product of the following reaction is:

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 55 English

Options:

A)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 55 English Option 1

B)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 55 English Option 2

C)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 55 English Option 3

D)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Alcohols, Phenols and Ethers Question 55 English Option 4

Question 10

Which one of the following reactions does not represent correct combination of substrate and product under the given conditions?

Options:

A)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 58 English Option 1

B)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 58 English Option 2

C)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 58 English Option 3

D)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 58 English Option 4

Numerical TypeQuestion 11

Among the following species

N2, N2+,N2,N22,O2,O2+,O2,O22\mathrm{N}_{2}, \mathrm{~N}_{2}^{+}, \mathrm{N}_{2}^{-}, \mathrm{N}_{2}^{2-}, \mathrm{O}_{2}, \mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{2-}

the number of species showing diamagnesim is _______________.

Numerical TypeQuestion 12

The enthalpy of combustion of propane, graphite and dihydrogen at 298 K298 \mathrm{~K} are 2220.0 kJ mol1,393.5 kJ mol1-2220.0 \mathrm{~kJ} \mathrm{~mol}^{-1},-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} and 285.8 kJ mol1-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1} respectively. The magnitude of enthalpy of formation of propane (C3H8)\left(\mathrm{C}_{3} \mathrm{H}_{8}\right) is _______________ kJmol1\mathrm{kJ} \,\mathrm{mol}^{-1}. (Nearest integer)

Question 13

20 mL20 \mathrm{~mL} of 0.1MNH4OH0.1\, \mathrm{M} \,\mathrm{NH}_{4} \mathrm{OH} is mixed with 40 mL40 \mathrm{~mL} of 0.05MHCl0.05 \mathrm{M} \mathrm{HCl}. The pH\mathrm{pH} of the mixture is nearest to :

(Given : Kb(NH4OH)=1×105,log2=0.30,log3=0.48,log5=0.69,log7=0.84,log11=1.04)\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=1 \times 10^{-5}, \log 2=0.30, \log 3=0.48, \log 5=0.69, \log 7=0.84, \log 11= 1.04)

Options:

A)

3.2

B)

4.2

C)

5.2

D)

6.2

Question 14

An organic compound 'A' on reaction with NH3 followed by heating gives compound B. Which on further strong heating gives compound C (C8H5NO2). Compound C on sequential reaction with ethanolic KOH, alkyl chloride and hydrolysis with alkali gives a primary amine. The compound A is :

Options:

A)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Compounds Containing Nitrogen Question 57 English Option 1

B)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Compounds Containing Nitrogen Question 57 English Option 2

C)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Compounds Containing Nitrogen Question 57 English Option 3

D)

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Compounds Containing Nitrogen Question 57 English Option 4

Numerical TypeQuestion 15

The cell potential for ZnZn2+(aq)Snx+Sn\mathrm{Zn}\left|\mathrm{Zn}^{2+}(\mathrm{aq})\right|\left|\mathrm{Sn}^{x+}\right| \mathrm{Sn} is 0.801 V0.801 \mathrm{~V} at 298 K298 \mathrm{~K}. The reaction quotient for the above reaction is 10210^{-2}. The number of electrons involved in the given electrochemical cell reaction is ____________.

(\left(\right. Given :EZn2+Zno=0.763 V,ESnx+Sno=+0.008 V: \mathrm{E}_{\mathrm{Zn}^{2+} \mid \mathrm{Zn}}^{\mathrm{o}}=-0.763 \mathrm{~V}, \mathrm{E}_{\mathrm{Sn}^{x+} \mid \mathrm{Sn}}^{\mathrm{o}}=+0.008 \mathrm{~V} and 2.303RTF=0.06 V)\left.\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{~V}\right)

Numerical TypeQuestion 16

Consider the following metal complexes :

[Co(NH3)6]3+\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}

[CoCl(NH3)5]2+\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}

[Co(CN)6]3\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}

[Co(NH3)5(H2O)]3+\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}

The spin-only magnetic moment value of the complex that absorbes light with shortest wavelength is _____________ B. M. (Nearest integer)

Numerical TypeQuestion 17

Among Co3+, Ti2+, V2+ and Cr2+ ions, one if used as a reagent cannot liberate H2 from dilute mineral acid solution, its spin-only magnetic moment in gaseous state is ___________ B.M. (Nearest integer)

Numerical TypeQuestion 18

While estimating the nitrogen present in an organic compound by Kjeldahl's method, the ammonia evolved from 0.25 g0.25 \mathrm{~g} of the compound neutralized 2.5 mL2.5 \mathrm{~mL} of 2MH2SO42 \,\mathrm{M} \,\mathrm{H}_{2} \mathrm{SO}_{4}. The percentage of nitrogen present in organic compound is ______________.

Question 19

If α,β,γ,δ\alpha, \beta, \gamma, \delta are the roots of the equation x4+x3+x2+x+1=0x^{4}+x^{3}+x^{2}+x+1=0, then α2021+β2021+γ2021+δ2021\alpha^{2021}+\beta^{2021}+\gamma^{2021}+\delta^{2021} is equal to :

Options:

A)

-4

B)

-1

C)

1

D)

4

Numerical TypeQuestion 20

In the given reaction

JEE Main 2022 (Online) 25th July Morning Shift Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 59 English

The number of chiral carbon/s in product A is ___________.

Question 21

The general solution of the differential equation (xy2)dx+y(5x+y2)dy=0\left(x-y^{2}\right) \mathrm{d} x+y\left(5 x+y^{2}\right) \mathrm{d} y=0 is :

Options:

A)

(y2+x)4=C(y2+2x)3\left(y^{2}+x\right)^{4}=\mathrm{C}\left|\left(y^{2}+2 x\right)^{3}\right|

B)

(y2+2x)4=C(y2+x)3\left(y^{2}+2 x\right)^{4}=C\left|\left(y^{2}+x\right)^{3}\right|

C)

(y2+x)3=C(2y2+x)4\left|\left(y^{2}+x\right)^{3}\right|=\mathrm{C}\left(2 y^{2}+x\right)^{4}

D)

(y2+2x)3=C(2y2+x)4\left|\left(y^{2}+2 x\right)^{3}\right|=C\left(2 y^{2}+x\right)^{4}

Question 22

If momentum [P], area [A][\mathrm{A}] and time [T][\mathrm{T}] are taken as fundamental quantities, then the dimensional formula for coefficient of viscosity is :

Options:

A)

[PA1 T0]\left[\mathrm{P} \,\mathrm{A}^{-1} \mathrm{~T}^{0}\right]

B)

[PA T1]\left[\mathrm{P} \,\mathrm{A}\mathrm{~T}^{-1}\right]

C)

[PA1 T]\left[\mathrm{P}\,\mathrm{A}^{-1} \mathrm{~T}\right]

D)

[PA1 T1]\left[\mathrm{P} \,\mathrm{A}^{-1} \mathrm{~T}^{-1}\right]

Question 23

A body of mass 0.5 kg0.5 \mathrm{~kg} travels on straight line path with velocity v=(3x2+4)m/sv=\left(3 x^{2}+4\right) \mathrm{m} / \mathrm{s}. The net workdone by the force during its displacement from x=0x=0 to x=2 mx=2 \mathrm{~m} is :

Options:

A)

64 J

B)

60 J

C)

120 J

D)

128 J

Question 24

A solid cylinder and a solid sphere, having same mass MM and radius RR, roll down the same inclined plane from top without slipping. They start from rest. The ratio of velocity of the solid cylinder to that of the solid sphere, with which they reach the ground, will be :

Options:

A)

53\sqrt{\frac{5}{3}}

B)

45\sqrt{\frac{4}{5}}

C)

35\sqrt{\frac{3}{5}}

D)

1415\sqrt{\frac{14}{15}}

Numerical TypeQuestion 25

A car is moving with speed of 150 km/h150 \mathrm{~km} / \mathrm{h} and after applying the break it will move 27 m27 \mathrm{~m} before it stops. If the same car is moving with a speed of one third the reported speed then it will stop after travelling ___________ m distance.

Numerical TypeQuestion 26

A wire of length L\mathrm{L} and radius r\mathrm{r} is clamped rigidly at one end. When the other end of the wire is pulled by a force F\mathrm{F}, its length increases by 5 cm5 \mathrm{~cm}. Another wire of the same material of length 4L4 \mathrm{L} and radius 4r4 \mathrm{r} is pulled by a force 4F4 \mathrm{F} under same conditions. The increase in length of this wire is __________________ cm\mathrm{cm}.

Question 27

The curve y(x)=ax3+bx2+cx+5y(x)=a x^{3}+b x^{2}+c x+5 touches the xx-axis at the point P(2,0)\mathrm{P}(-2,0) and cuts the yy-axis at the point QQ, where yy^{\prime} is equal to 3 . Then the local maximum value of y(x)y(x) is:

Options:

A)

274\frac{27}{4}

B)

294\frac{29}{4}

C)

374\frac{37}{4}

D)

92\frac{9}{2}

Question 28

The slope of the tangent to a curve C:y=y(x)C: y=y(x) at any point (x,y)(x, y) on it is 2e2x6ex+92+9e2x\frac{2 \mathrm{e}^{2 x}-6 \mathrm{e}^{-x}+9}{2+9 \mathrm{e}^{-2 x}}. If CC passes through the points (0,12+π22)\left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right) and (α,12e2α)\left(\alpha, \frac{1}{2} \mathrm{e}^{2 \alpha}\right), then eα\mathrm{e}^{\alpha} is equal to :

Options:

A)

3+232\frac{3+\sqrt{2}}{3-\sqrt{2}}

B)

32(3+232)\frac{3}{\sqrt{2}}\left(\frac{3+\sqrt{2}}{3-\sqrt{2}}\right)

C)

12(2+121) \frac{1}{\sqrt{2}}\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)

D)

2+121\frac{\sqrt{2}+1}{\sqrt{2}-1}

Question 29

Let the locus of the centre (α,β),β>0(\alpha, \beta), \beta>0, of the circle which touches the circle x2+(y1)2=1x^{2}+(y-1)^{2}=1 externally and also touches the xx-axis be L\mathrm{L}. Then the area bounded by L\mathrm{L} and the line y=4y=4 is:

Options:

A)

3223 \frac{32 \sqrt{2}}{3}

B)

4023 \frac{40 \sqrt{2}}{3}

C)

643\frac{64}{3}

D)

323 \frac{32}{3}

Numerical TypeQuestion 30

The letters of the word 'MANKIND' are written in all possible orders and arranged in serial order as in an English dictionary. Then the serial number of the word 'MANKIND' is _____________.

Question 31

Two charged particles, having same kinetic energy, are allowed to pass through a uniform magnetic field perpendicular to the direction of motion. If the ratio of radii of their circular paths is 6:56: 5 and their respective masses ratio is 9:49: 4. Then, the ratio of their charges will be :

Options:

A)

8 : 5

B)

5 : 4

C)

5 : 3

D)

8 : 7

Question 32

To increase the resonant frequency in series LCR circuit,

Options:

A)

source frequency should be increased.

B)

another resistance should be added in series with the first resistance.

C)

another capacitor should be added in series with the first capacitor.

D)

the source frequency should be decreased.

Question 33

A small square loop of wire of side ll is placed inside a large square loop of wire \mathrm{L}(\mathrm{L}>>l). Both loops are coplanar and their centres coincide at point O\mathrm{O} as shown in figure. The mutual inductance of the system is :

JEE Main 2022 (Online) 25th July Morning Shift Physics - Electromagnetic Induction Question 42 English

Options:

A)

22μ0 L2πl\frac{2 \sqrt{2} \mu_{0} \mathrm{~L}^{2}}{\pi l}

B)

μ0l222πL\frac{\mu_{0} l^{2}}{2 \sqrt{2} \pi \mathrm{L}}

C)

22μ0l2πL\frac{2 \sqrt{2} \mu_{0} l^{2}}{\pi \mathrm{L}}

D)

μ0 L222πl \frac{\mu_{0} \mathrm{~L}^{2}}{2 \sqrt{2} \pi l}

Question 34

Which of the following statement is correct?

Options:

A)

In primary rainbow, observer sees red colour on the top and violet on the bottom

B)

In primary rainbow, observer sees violet colour on the top and red on the bottom

C)

In primary rainbow, light wave suffers total internal reflection twice before coming out of water drops.

D)

Primary rainbow is less bright than secondary rainbow.

Question 35

Time taken by light to travel in two different materials AA and BB of refractive indices μA\mu_{A} and μB\mu_{B} of same thickness is t1t_{1} and t2t_{2} respectively. If t2t1=5×1010t_{2}-t_{1}=5 \times 10^{-10} s and the ratio of μA\mu_{A} to μB\mu_{B} is 1:21: 2. Then, the thickness of material, in meter is: (Given vAv_{\mathrm{A}} and vBv_{\mathrm{B}} are velocities of light in AA and BB materials respectively.)

Options:

A)

5×1010vAm5 \times 10^{-10} \,v_{\mathrm{A}}\, \mathrm{m}

B)

5×1010 m5 \times 10^{-10} \mathrm{~m}

C)

1.5×1010 m1.5 \times 10^{-10} \mathrm{~m}

D)

5×1010vBm5 \times 10^{-10} \,v_{\mathrm{B}} \,\mathrm{m}

Question 36

The magnetic moment of an electron (e) revolving in an orbit around nucleus with an orbital angular momentum is given by :

Options:

A)

μL=eL2 m \vec{\mu}_{\mathrm{L}}=\frac{\overrightarrow{\mathrm{eL}}}{2 \mathrm{~m}}

B)

μL=eL2 m\vec{\mu}_{\mathrm{L}}=-\frac{\overrightarrow{\mathrm{eL}}}{2 \mathrm{~m}}

C)

μl=eL m\vec{\mu}_{l}=-\frac{\overrightarrow{e L}}{\mathrm{~m}}

D)

μl=2eLm \vec{\mu}_{l}=\frac{2 \overrightarrow{\mathrm{eL}}}{\mathrm{m}}

Question 37

In the circuit, the logical value of A=1A=1 or B=1B=1 when potential at AA or BB is 5 V5 \mathrm{~V} and the logical value of A=0A=0 or B=0B=0 when potential at AA or BB is 0 V0 \mathrm{~V}.

JEE Main 2022 (Online) 25th July Morning Shift Physics - Semiconductor Question 47 English

The truth table of the given circuit will be :

Options:

A)

\matrix{ A & B & Y \cr 0 & 0 & 0 \cr 1 & 0 & 0 \cr 0 & 1 & 0 \cr 1 & 1 & 1 \cr }

B)

\matrix{ A & B & Y \cr 0 & 0 & 0 \cr 1 & 0 & 1 \cr 0 & 1 & 1 \cr 1 & 1 & 1 \cr }

C)

\matrix{ A & B & Y \cr 0 & 0 & 0 \cr 1 & 0 & 0 \cr 0 & 1 & 0 \cr 1 & 1 & 0 \cr }

D)

\matrix{ A & B & Y \cr 0 & 0 & 1 \cr 1 & 0 & 1 \cr 0 & 1 & 1 \cr 1 & 1 & 0 \cr }

Numerical TypeQuestion 38

A unit scale is to be prepared whose length does not change with temperature and remains 20 cm20 \mathrm{~cm}, using a bimetallic strip made of brass and iron each of different length. The length of both components would change in such a way that difference between their lengths remains constant. If length of brass is 40 cm40 \mathrm{~cm} and length of iron will be __________ cm\mathrm{cm}. (αiron =1.2×105 K1\left(\alpha_{\text {iron }}=1.2 \times 10^{-5} \mathrm{~K}^{-1}\right. and αbrass =1.8×105 K1)\left.\alpha_{\text {brass }}=1.8 \times 10^{-5} \mathrm{~K}^{-1}\right).

Numerical TypeQuestion 39

Eight copper wire of length ll and diameter dd are joined in parallel to form a single composite conductor of resistance RR. If a single copper wire of length 2l2 l have the same resistance (R)(R) then its diameter will be ____________ d.

Numerical TypeQuestion 40

The energy band gap of semiconducting material to produce violet (wavelength = 4000Ao\mathop A\limits^o ) LED is ______________ eV\mathrm{eV}. (Round off to the nearest integer).

Question 41

For nN\mathrm{n} \in \mathbf{N}, let Sn={zC:z3+2i=n4}\mathrm{S}_{\mathrm{n}}=\left\{z \in \mathbf{C}:|z-3+2 i|=\frac{\mathrm{n}}{4}\right\} and Tn={zC:z2+3i=1n}\mathrm{T}_{\mathrm{n}}=\left\{z \in \mathbf{C}:|z-2+3 i|=\frac{1}{\mathrm{n}}\right\}. Then the number of elements in the set {nN:SnTn=ϕ}\left\{n \in \mathbf{N}: S_{n} \cap T_{n}=\phi\right\} is :

Options:

A)

0

B)

2

C)

3

D)

4

Question 42

For any real number xx, let [x][x] denote the largest integer less than equal to xx. Let ff be a real valued function defined on the interval [10,10][-10,10] by f(x)={x[x], if [x] is odd 1+[x]x, if [x] is even .f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even } .\end{array}\right. Then the value of π2101010f(x)cosπxdx\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x \,d x is :

Options:

A)

4

B)

2

C)

1

D)

0

Question 43

If the numbers appeared on the two throws of a fair six faced die are α\alpha and β\beta, then the probability that x2+αx+β>0x^{2}+\alpha x+\beta>0, for all xRx \in \mathbf{R}, is :

Options:

A)

1736\frac{17}{36}

B)

49 \frac{4}{9}

C)

12\frac{1}{2}

D)

1936\frac{19}{36}

Numerical TypeQuestion 44

If the maximum value of the term independent of tt in the expansion of (t2x15+(1x)110t)15,x0\left(\mathrm{t}^{2} x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{\mathrm{t}}\right)^{15}, x \geqslant 0, is K\mathrm{K}, then 8 K8 \mathrm{~K} is equal to ____________.

Numerical TypeQuestion 45

Let f(x)={4x28x+5, if 8x26x+10[4x28x+5], if 8x26x+1<0,f(x)=\left\{\begin{array}{l}\left|4 x^{2}-8 x+5\right|, \text { if } 8 x^{2}-6 x+1 \geqslant 0 \\ {\left[4 x^{2}-8 x+5\right], \text { if } 8 x^{2}-6 x+1<0,}\end{array}\right. where [α][\alpha] denotes the greatest integer less than or equal to α\alpha. Then the number of points in R\mathbf{R} where ff is not differentiable is ___________.

Question 46

Three identical particles A,B\mathrm{A}, \mathrm{B} and C\mathrm{C} of mass 100 kg100 \mathrm{~kg} each are placed in a straight line with AB=BC=13 m\mathrm{AB}=\mathrm{BC}=13 \mathrm{~m}. The gravitational force on a fourth particle P\mathrm{P} of the same mass is F\mathrm{F}, when placed at a distance 13 m13 \mathrm{~m} from the particle B\mathrm{B} on the perpendicular bisector of the line AC\mathrm{AC}. The value of F\mathrm{F} will be approximately :

Options:

A)

21 G

B)

100 G

C)

59 G

D)

42 G

Question 47

A certain amount of gas of volume V\mathrm{V} at 27C27^{\circ} \mathrm{C} temperature and pressure 2×107Nm22 \times 10^{7} \mathrm{Nm}^{-2} expands isothermally until its volume gets doubled. Later it expands adiabatically until its volume gets redoubled. The final pressure of the gas will be (Use γ=1.5)\gamma=1.5) :

Options:

A)

3.536×105 Pa3.536 \times 10^{5} \mathrm{~Pa}

B)

3.536×106 Pa3.536 \times 10^{6} \mathrm{~Pa}

C)

1.25×106 Pa1.25 \times 10^{6} \mathrm{~Pa}

D)

1.25×105 Pa1.25 \times 10^{5} \mathrm{~Pa}

Question 48

A condenser of 2μF2 \,\mu \mathrm{F} capacitance is charged steadily from 0 to 5C5 \,\mathrm{C}. Which of the following graph represents correctly the variation of potential difference (V)(\mathrm{V}) across it's plates with respect to the charge (Q)(Q) on the condenser?

Options:

A)

JEE Main 2022 (Online) 25th July Morning Shift Physics - Capacitor Question 38 English Option 1

B)

JEE Main 2022 (Online) 25th July Morning Shift Physics - Capacitor Question 38 English Option 2

C)

JEE Main 2022 (Online) 25th July Morning Shift Physics - Capacitor Question 38 English Option 3

D)

JEE Main 2022 (Online) 25th July Morning Shift Physics - Capacitor Question 38 English Option 4

Question 49

The rms value of conduction current in a parallel plate capacitor is 6.9μA6.9 \,\mu \mathrm{A}. The capacity of this capacitor, if it is connected to 230 V230 \mathrm{~V} ac supply with an angular frequency of 600rad/s600 \,\mathrm{rad} / \mathrm{s}, will be :

Options:

A)

5 pF

B)

50 pF

C)

100 pF

D)

200 pF

Question 50

The momentum of an electron revolving in nth \mathrm{n}^{\text {th }} orbit is given by :

(Symbols have their usual meanings)

Options:

A)

nh2πr\frac{\mathrm{nh}}{2 \pi \mathrm{r}}

B)

nh2r \frac{n h}{2 r}

C)

nh2π \frac{\mathrm{nh}}{2 \pi}

D)

2πrnh\frac{2 \pi r}{\mathrm{nh}}

Numerical TypeQuestion 51

Four forces are acting at a point P\mathrm{P} in equilibrium as shown in figure. The ratio of force F1\mathrm{F}_{1} to F2\mathrm{F}_{2} is 1:x1: x where x=x= _____________.

JEE Main 2022 (Online) 25th July Morning Shift Physics - Laws of Motion Question 37 English

Numerical TypeQuestion 52

The volume charge density of a sphere of radius 6 m6 \mathrm{~m} is 2μCcm32 \,\mu \mathrm{C} \,\mathrm{cm}^{-3}. The number of lines of force per unit surface area coming out from the surface of the sphere is _______________ ×1010NC1\times 10^{10} \,\mathrm{NC}^{-1}.

[Given : Permittivity of vacuum ϵ0=8.85×1012C2 N1m2\epsilon_{0}=8.85 \times 10^{-12} \,\mathrm{C}^{2}\, \mathrm{~N}^{-1}-\mathrm{m}^{-2} )

Numerical TypeQuestion 53

The number of sp3 hybridised carbons in an acyclic neutral compound with molecular formula C4H5N is ___________.

Question 54

The total number of functions,

f:{1,2,3,4}{1,2,3,4,5,6} f:\{1,2,3,4\} \rightarrow\{1,2,3,4,5,6\} such that f(1)+f(2)=f(3)f(1)+f(2)=f(3), is equal to :

Options:

A)

60

B)

90

C)

108

D)

126

Question 55

The number of θ(0,4π)\theta \in(0,4 \pi) for which the system of linear equations

3(sin3θ)xy+z=23(cos2θ)x+4y+3z=36x+7y+7z=9 \begin{aligned} &3(\sin 3 \theta) x-y+z=2 \\\\ &3(\cos 2 \theta) x+4 y+3 z=3 \\\\ &6 x+7 y+7 z=9 \end{aligned}

has no solution, is :

Options:

A)

6

B)

7

C)

8

D)

9

Question 56

If limn(n2n1+nα+β)=0\mathop {\lim }\limits_{n \to \infty } \left( {\sqrt {{n^2} - n - 1} + n\alpha + \beta } \right) = 0, then 8(α+β)8(\alpha+\beta) is equal to :

Options:

A)

4

B)

-8

C)

-4

D)

8

Question 57

If the absolute maximum value of the function f(x)=(x22x+7)e(4x312x2180x+31)f(x)=\left(x^{2}-2 x+7\right) \mathrm{e}^{\left(4 x^{3}-12 x^{2}-180 x+31\right)} in the interval [3,0][-3,0] is f(α)f(\alpha), then :

Options:

A)

α=0\alpha=0

B)

α=3 \alpha=-3

C)

α(1,0)\alpha \in(-1,0)

D)

α(3,1]\alpha \in(-3,-1]

Question 58

The area of the region given by

A={(x,y):x2ymin{x+2,43x}}A=\left\{(x, y): x^{2} \leq y \leq \min \{x+2,4-3 x\}\right\} is :

Options:

A)

318\frac{31}{8}

B)

176\frac{17}{6}

C)

196\frac{19}{6}

D)

278\frac{27}{8}

Question 59

A line, with the slope greater than one, passes through the point A(4,3)A(4,3) and intersects the line xy2=0x-y-2=0 at the point B. If the length of the line segment ABA B is 293\frac{\sqrt{29}}{3}, then BB also lies on the line :

Options:

A)

2x+y=92 x+y=9

B)

3x2y=73 x-2 y=7

C)

x+2y=6 x+2 y=6

D)

2x3y=32 x-3 y=3

Question 60

Let ABC\mathrm{ABC} be a triangle such that BC=a,CA=b,AB=c,a=62,b=23\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{c}},|\overrightarrow{\mathrm{a}}|=6 \sqrt{2},|\overrightarrow{\mathrm{b}}|=2 \sqrt{3} and bc=12\vec{b} \cdot \vec{c}=12. Consider the statements :

(S1):(a×b)+(c×b)c=6(221)(\mathrm{S} 1):|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}})|-|\vec{c}|=6(2 \sqrt{2}-1)

(S2):ACB=cos1(23)(\mathrm{S} 2): \angle \mathrm{ACB}=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)

Then

Options:

A)

both (S1) and (S2) are true

B)

only (S1) is true

C)

only (S2) is true

D)

both (S1) and (S2) are false

Numerical TypeQuestion 61

Let A=(211101110)A=\left(\begin{array}{rrr}2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right) and B=AIB=A-I. If ω=3i12\omega=\frac{\sqrt{3} i-1}{2}, then the number of elements in the set{n{1,2,,100}:An+(ωB)n=A+B}\operatorname{set}\left\{n \in\{1,2, \ldots, 100\}: A^{n}+(\omega B)^{n}=A+B\right\} is equal to ____________.

Numerical TypeQuestion 62

Let a,ba, b be two non-zero real numbers. If pp and rr are the roots of the equation x28ax+2a=0x^{2}-8 \mathrm{a} x+2 \mathrm{a}=0 and q\mathrm{q} and s are the roots of the equation x2+12 bx+6 b=0x^{2}+12 \mathrm{~b} x+6 \mathrm{~b}=0, such that 1p,1q,1r,1 s\frac{1}{\mathrm{p}}, \frac{1}{\mathrm{q}}, \frac{1}{\mathrm{r}}, \frac{1}{\mathrm{~s}} are in A.P., then a1b1\mathrm{a}^{-1}-\mathrm{b}^{-1} is equal to _____________.

Question 63

Which of the following physical quantities have the same dimensions?

Options:

A)

Electric displacement (D)(\overrightarrow{\mathrm{D}}) and surface charge density

B)

Displacement current and electric field

C)

Current density and surface charge density

D)

Electric potential and energy

Question 64

A person moved from A to B on a circular path as shown in figure. If the distance travelled by him is 60 m60 \mathrm{~m}, then the magnitude of displacement would be :

(Given cos135=0.7)\left.\cos 135^{\circ}=-0.7\right)

JEE Main 2022 (Online) 25th July Morning Shift Physics - Circular Motion Question 23 English

Options:

A)

42 m

B)

47 m

C)

19 m

D)

40 m

Question 65

Following statements are given :

(A) The average kinetic energy of a gas molecule decreases when the temperature is reduced.

(B) The average kinetic energy of a gas molecule increases with increase in pressure at constant temperature.

(C) The average kinetic energy of a gas molecule decreases with increase in volume.

(D) Pressure of a gas increases with increase in temperature at constant pressure.

(E) The volume of gas decreases with increase in temperature.

Choose the correct answer from the options given below :

Options:

A)

(A) and (D) only

B)

(A), (B) and (D) only

C)

(B) and (D) only

D)

(A), (B) and (E) only

Question 66

JEE Main 2022 (Online) 25th July Morning Shift Physics - Simple Harmonic Motion Question 40 English

In figure (A)(\mathrm{A}), mass '2 m’ 2 \mathrm{~m}^{\text {' }} is fixed on mass 'm\mathrm{m} ' which is attached to two springs of spring constant k\mathrm{k}. In figure (B), mass 'm\mathrm{m}' is attached to two springs of spring constant 'k\mathrm{k}' and '2k2 \mathrm{k}^{\prime}. If mass 'm\mathrm{m}' in (A) and in (B) are displaced by distance 'xx^{\prime} horizontally and then released, then time period T1\mathrm{T}_{1} and T2\mathrm{T}_{2} corresponding to (A)(\mathrm{A}) and (B) respectively follow the relation.

Options:

A)

T1 T2=32 \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{3}{\sqrt{2}}

B)

T1 T2=32 \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\sqrt{\frac{3}{2}}

C)

T1 T2=23 \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\sqrt{\frac{2}{3}}

D)

T1T2=23 \frac{T_{1}}{T_{2}}=\frac{\sqrt{2}}{3}

Question 67

A metal exposed to light of wavelength 800 nm800 \mathrm{~nm} and and emits photoelectrons with a certain kinetic energy. The maximum kinetic energy of photo-electron doubles when light of wavelength 500 nm500 \mathrm{~nm} is used. The workfunction of the metal is : (Take hc =1230eVnm=1230 \,\mathrm{eV}-\mathrm{nm} ).

Options:

A)

1.537 eV

B)

2.46 eV

C)

0.615 eV

D)

1.23 eV

Numerical TypeQuestion 68

In the given figure, the value of Vo will be _____________ V.

JEE Main 2022 (Online) 25th July Morning Shift Physics - Current Electricity Question 96 English